MCLF Documentation

Stefan Wewers

Mar 22, 2021
1 Curves 3
1.1 Smooth projective curves over a field 3
1.2 Morphisms of smooth projective curves 14
1.3 Superelliptic curves 17
2 The Berkovich line 19
2.1 The Berkovich line over a discretely valued field 19
2.2 Finite subtrees of the Berkovich line 31
2.3 Points of type V on the Berkovich line 37
2.4 Affinoid subdomains of the Berkovich line 39
2.5 Piecewise affine functions on the Berkovich projective line 48
3 p-adic extensions 59
3.1 Fake p-adic completions 59
3.2 Fake p-adic embeddings 66
3.3 Fake p-adic extensions 68
3.4 Weak p-adic Galois extensions 69
4 Semistable reduction of curves 73
4.1 Semistable reduction of a smooth projective curve over a local field 73
4.2 Admissible reduction of curves 77
4.3 Semistable models of superelliptic curves of degree p 77
4.4 Reduction trees: a data structure for semistable reduction of covers of the projective line 81
5 Indices and tables 91
Bibliography 93
Python Module Index 95
Index 97

Contents:

MCLF Documentation

CHAPTER 1

Curves

1.1 Smooth projective curves over a field

Let k be a field and F / k a finitely generated field extension of transcendence degree one (i.e. a 'function field over k '). Then there exists a smooth projective curve X over $\operatorname{Spec}(k)$ with function field F, unique up to unique isomorphism. The set of closed points on X are in natural bijection with the set of discrete valuations on F which are trivial on k. See

- R. Hartshorne, Algebraic Geometry, Theorem I.6.9.

The classes in this module provide the definition and some basic functionality for such curves.
A curve X is defined via its function field F_{X}. Points are represented by the corresponding valuations on F_{X}, and no smooth projective model of X is actually computed. However, we do compute a list of 'coordinate functions' $x_{1}, . ., x_{n}$ which separate all points, meaning that the closure of the rational map from X to projective space of dimension n is injective. Then a (closed) point x on X can also be represented by the tupel $\left(f_{1}(x), . ., f_{n}(x)\right)$. This is useful to test for equality of points.

A function field in Sage is always realized as a simple separable extension of a rational function field. Geometrically, this means that the curve X is implicitly equipped with a finite separable morphism $\phi: X \rightarrow \mathbb{P}_{k}^{1}$ to the projective line over the base field k.

The base field k is called the constant base field of the curve, and it is part of the data. We do not assume that the extension F_{X} / k is regular (i.e. that k is algebraically closed in F_{X}). Geometrically this means that the curve X may not be absolutely irreducibel as a k-scheme. The field of constants of X is defined as the algebraic closure of k inside F_{X}. It is a finite extension k_{c} / k. If we regard X as a curve over its fields of constants then it becomes absolute irreducible.

It would be interesting to have an efficient algorithm for computing the field of constants, but it seems that this has not been implemented in Sage yet. To compute the genus of X it is necessary to know at least the degree $\left[k_{c}: k\right]$. If k is a finite field, it is actually easy to compute k_{c}. If k is a number field we use a probabilistic algorithm for computing the degree $\left[k_{c}: k\right]$, by reducing the curve modulo several small primes.

Currently, the function field F defining a smooth projective curve must be a simple finite extension of a rational

MCLF Documentation

function field, i.e. of the form

$$
F=k(x)[y] /(G)
$$

where G is an irreducible polynomial over $k(x)$. If not explicitly stated otherwise, it is assumed that k is the constant base field of the curve X. If k is a finite field, then one may also declare any subfield k_{0} of k to be the constant base field. Geometrically, this means that we consider X as a curve over $\operatorname{Spec}\left(k_{0}\right)$. In any case, the field of constants of X is a finite extension of k.

AUTHORS:

- Stefan Wewers (2016-11-11): initial version

EXAMPLES:

```
sage: from mclf import *
sage: K = GF(2)
sage: FX.<x> = FunctionField(K)
sage: R.<T> = FX[]
```



```
sage: Y = SmoothProjectiveCurve(FY)
sage: Y
the smooth projective curve with Function field in y defined by y^2 + x^ 2*y + x^5 + x^
\hookrightarrow
sage: Y.genus()
1
sage: Y.zeta_function()
(2* T^2 + T + 1)/(2* T^2 - 3*T + 1)
```

Over finite fields, we are allowed to specify the constant base field:

```
sage: K = GF (4)
sage: F.<x> = FunctionField(K)
sage: X = SmoothProjectiveCurve(F, k=GF(2))
sage: X
the smooth projective curve with Rational function field in x over Finite Field in z2&
@f size 2^2 and constant base field Finite Field of size 2
sage: X.field_of_constants()
Finite Field in z2 of size 2^2
```

A curve may also be defined by an irreducible bivariate polynomial:

```
sage: A.<x,y> = QQ[]
sage: X = SmoothProjectiveCurve(y^2 - x^3 - 1)
sage: X
the smooth projective curve with Function field in y defined by y^2 - x^3 - 1
```

If the curve is defined over a number field, we can find a prime of good reduction, and compute the reduction:

```
sage: v_p = X.prime_of_good_reduction()
sage: v__p
5-adic valuation
```

The result is a discrete (p -adic) valuation on the constant base field. The reduction is a smooth projective curve of the same genus:

```
sage: Xb = X.good_reduction(v_p)
sage: Xb
```

```
the smooth projective curve with Function field in y defined by y^2 + 4*x^3 + 4
sage: Xb.genus()
1
```


Todo:

- allow to specify the constant base field in a more flexible way
- write more doctests !!
- implement a general and deterministic algorithm for computing the field of constants (and not just the degree)
- the residue field of a point should be explicitly an extension of the constant base field.
- treat the base curve X as a curve, not just as a function field
- realize morphisms between curves, in particular the canonical map to X

```
class mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve(X,
```


Bases: SageObject

A closed point on a smooth projective curve.
A point on a curve X is identified with the corresponding valuation v_{x} on the function field F of X.
Alternatively, a point x on X can be represented by the vector

$$
\left[v_{x}\left(f_{1}\right), \ldots, v_{x}\left(f_{n}\right)\right]
$$

where f_{1}, \ldots, f_{n} is a list of coordinate functions, i.e. rational functions which define an injective map from X into $\mathbb{P}^{1} \times \ldots \times \mathbb{P}^{1}$.

We use the latter representation to check for equality of points.

```
absolute_degree()
```

Return the absolute degree of self.
The absolute degree of a point x on a curve X over k is the degree of the extension $k(x) / k$.
Here k is the constant base field of the curve, which may not be equal to the field of constants.

coordinates()

Return the coordinate tupel of the point.
NOTE:
for a curve over a number field and for a point whose residue field is of high degree, this can be very slow. It would be better to implement this function in a lazy way, for instance as an iterator.

```
curve()
```

Return the underlying curve of the point.

```
degree()
```

Return the degree of self.
The degree of a point x on a curve X over k is the degree of the residue field $k(x)$ as an extension of the field of constants of X. The latter may be a proper extension of the base field k !

is_equal (P)

Check whether this point is equal to P .
INPUT:

- P - a point on the curve underlying this point

OUTPUT:
True is P is equal to self, False otherwise.
Currently, the check for equality is done using the 'coordinates' of the points. This may be very slow. It would probably be better to test the equality of the underlying valuations. But here we can't rely on Sage, so this would require a hack.

EXAMPLES:

```
sage: import mclf.curves.smooth_projective_curves
sage: from mclf.curves.smooth_projective_curves import SmoothProjectiveCurve
sage: F0.<x> = FunctionField(GF(3))
sage: R.<y> = F0[]
sage: F. <y> = F0.extension(y^2 - (x+1)*x^2)
sage: Y = SmoothProjectiveCurve(F)
sage: v0 = FO.valuation(x)
sage: fiber = Y.fiber(v0)
sage: fiber[0].is_equal(fiber[1])
False
```

order (f)

Return the order of the function in the point.
This is the same as self.valuation()(f).

```
residue_field()
```

Return the residue field of the point.
valuation()
Return the valuation corresponding to the point.
value (f)
Return the value of the function f in the point.
If f has a pole then Infinity is returned.
class mclf.curves.smooth_projective_curves.SmoothProjectiveCurve ($F, \quad k=$ None,
$a s$ -
sume_regular=False)
Bases: SageObject
Return the smooth projective curve with function field F.
INPUT:

- F - a function field, or an irreducible bivariate polynomial over a field
- k - a field which has a natural embedding into the constant base field of F, such that the constant base field is a finite extension of k (or None).
- assume_regular - a boolean (default: False)

OUTPUT:

the smooth projective curve X with function field F. If F is an irreducible bivariate polynomial, we use the function field with two generators and relation F.

If k is given, then X is considered as a k-scheme. If k is not given then we use the field of constants of F instead.

NOTE:

At the moment, k should only be different from the constant base field of F if k is finite (because it is then easy to compute the degree of the degree of the constant base field of F over k).

compute_separable_model()

Compute a separable model of the curve (if necessary).

OUTPUT: None

This function only has to be called only once. It then decides whether or not the function field of the curve is given as a separable extension of the base field or not. If it is not separable then we compute a separable model, which is a tripel $\left(Y_{1}, \phi, q\right)$ where

- Y_{1} is a smooth projective curve over the same constant base field k as the curve Y itself, and which is given by a separable extension,
- ϕ is a field homomorphism from the function field of Y_{1} into the function field of Y corresponding to a purely inseparable extension,
- q is the degree of the extension given by ϕ, i.e. the degree of inseparability of the map $Y \rightarrow Y_{1}$ given by ϕ. Note that q is a power of the characteristic of k.

constant_base_field()

Return the constant base field.
coordinate_functions()
Return a list of coordinate functions.
By 'list of coordinate functions' we mean elements f_{i} in the function field, such that the map

$$
x \mapsto\left(f_{1}(x), \ldots, f_{n}(x)\right)
$$

from X to $\left(\mathbb{P}^{1}\right)^{n}$ is injective.
Note that this map may not be an embedding, i.e. image of this map may not be a smooth model of the curve.

```
count_points (d)
```

Return number of points of degree less or equal to d.
INPUT:

- $d-$ an interger ≥ 1

OUTPUT:
a list N , where $\mathrm{N}[\mathrm{i}]$ is the number of points on self of absolute degree i, for $i=1, . ., d$.
Recall that the absolute degree of a point is the degree of the residue field of the point over the constant base field (not over the field of constants).

This is a very slow realization and should be improved at some point.

covering_degree ()

Return the degree of this curve as a covering of the projective line.

```
degree (D)
```

Return the degree of the divisor D.
Note that the degree of D is defined relative to the field of constants of the curve.

degree_of_inseparability()

Return the degree of inseparability of this curve.
OUTPUT: positive integer, which is a power of the characteristic of the function field of this curve.

divisor_of_poles (f)

Return the divisor of poles of f.

divisor_of_zeroes (f)

Return the divisor of zeroes of f.
fiber ($v 0$)
Return the set of points lying above a point on the projective line.
INPUT:

- $\mathrm{v} 0-\mathrm{a}$ function field valuation on the rational function field

OUTPUT:

a list containing the points on this curve Y corresponding to extensions of $v 0$ to the function field of Y.

field_of_constants()

Return the field of constants of this curve.
If F is the function field of the curve and k the constant base field, then the field of constants is the algebraic closure of k in F.

For the moment, this is implemented only if the constant base field is a finite field.
EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(GF(2))
sage: R.<y> = F[]
sage: G = (y+x)^4 + (y + x) + 1
sage: F1.<y> = F.extension(G)
sage: Y1 = SmoothProjectiveCurve(F1)
sage: Y1.field_of_constants()
Finite Field in z4 of size 2^4
```


field_of_constants_degree()

Return the degree of the field of constants over the constant base field.
If F is the function field of the curve and k the constant base field, then the field of constants k_{c} is the algebraic closure of k in F.

If k is a finite field then we actually compute the field of constants, and the result is provably correct. If k is a number field, then we use a heuristic method: we find at least 10 different primes of k for which the reduction of the defining equation remains irreducible, and then we apply the method for finite fields to the reduced equation. The result is very likely the true degree of the field of constants, and if the result is equal to 1 then it is provably correct.
EXAMPLES:

```
sage: from mclf import *
sage: k = GF (2^3)
sage: F.<x> = FunctionField(k)
sage: R.<y> = F[]
sage: G = (y+x)^4 + (y+x) + 1
sage: F1.<y> = F.extension(G)
sage: Y1 = SmoothProjectiveCurve(F1, GF(2))
sage: Y1.field_of_constants_degree()
12
sage: F.<x> = FunctionField(QQ)
sage: R.<y> = F[]
sage: G = y^4 + x*y + 1
```

```
sage: F2.<y> = F.extension(G)
sage: Y2 = SmoothProjectiveCurve(F2)
sage: Y2.field_of_constants_degree()
1
sage: R.<y> = F[]
sage: G = (y+x)^3 + (y+x) + 1
sage: F3.<y> = F.extension(G)
sage: Y3 = SmoothProjectiveCurve(F3)
sage: Y3.field_of_constants_degree()
3
sage: Y3.genus()
0
```


Todo:

- implement a deterministic algorithm for number fields

function_field()

Return the function field of the curve self.
genus (use_reduction=True)
Return the genus of the curve.

INPUT:

- use_reduction - a boolean (default: True)

OUTPUT: the genus of this curve.
The genus of the curve is defined as the dimension of the cohomology group $H^{1}\left(X, \mathcal{O}_{X}\right)$, as a vector space over the field of constants ' $k _c$ '.

The genus g of the curve X is computed using the Riemann-Hurwitz formula, applied to the cover $X \rightarrow \mathbb{P}^{1}$ corresponding to the underlying realization of the function field of X as a finite separable extension of a rational function field. See:

- Hartshorne, Algebraic Geometry, Corollary IV.2.4

If the constant base field is finite, we compute the degree of the 'ramification divisor'. If it is not, we assume that the characteristic is zero, and we use the 'tame' Riemann Hurwitz Formula.

If the curve is defined over a number field, and use_reduction is True (the default) then the genus of a reduction of this curve to some prime of good reduction is computed. This may be consderably faster.

EXAMPLES:

```
sage: from mclf import *
sage: F0.<x> = FunctionField(GF (2))
sage: R.<T> = FO[]
sage: G = T^2 + T + x^3 + x + 1
sage: F.<y> = F0.extension(G)
sage: Y = SmoothProjectiveCurve(F)
sage: Y.genus()
I
sage: G = T^2 + x^^3+x + 1
sage: F.<y> = F0.extension(G)
sage: Y = SmoothProjectiveCurve(F)
```

```
sage: Y.genus()
```

0
good_reduction ($v _p$)
Return the reduction of this curve at a prime of good reduction.
INPUT:

- v_p - a discrete valuation on the constant base field K

OUTPUT: the reduction of this curve with respect to v_{p}, assuming that this is again a smooth projective curve of the same genus. Otherwise, an error is raised.

Note that we just reduce the plane equation for this curve with respect to v_{p}. This is a very naive notion of good reduction. If it works, then the curve does indeed have good reduction at v_{p}, and the result is correct.
is_separable()
Check whether this curve is represented as a separable cover of the projective line.
phi ()
Return the natural embedding of the function field of the separable model into the function field of this curve.

OUTPUT: a field homomorphism
plane_equation()
Return the plane equation of this curve.

OUTPUT:

A polynomial in two variables over the constant base field which defines the plane model of this curve, where the first variable corresponds to the base field F0.
point (v)
Returns the point on the curve corresponding to v .
INPUT:

- v - a discrete valuation on the function field of the curve

OUTPUT:

The point on the curve corresponding to v . The valuation v must be trivial on the constant base field.

```
points_with_coordinates(a)
```

Return all points with given coordinates.

INPUT:

- a - a tupel of coordinates, of lenght n, at most the number of coordinate functions of the curve

OUTPUT:

a list containing all points on the curve whose first n coordinate values agree with a.

potential_branch_divisor()

Return list of valuations containing the branch locus.

OUTPUT:

A list of pairs $(v, d)^{\prime}$, where runs over a list of valuations of the base field $F_{0}=K(x)$ containing all the valuations corresponding to a branch point of the cover of curves, and d is the degree of v.
prime_of_good_reduction()
Return a prime ideal where this curve has good reduction.
OUTPUT:
We assume that the constant base field K is a number field. We return a discrete valuation v on K such that the following holds:

- all the coefficients of the plane equation $G(x, y)=0$ of this curve are v-integral
- the reduction of G to the residue field of v is irreducible and defines a plane curve with the same genus as the original curve.

Note that this implies that v is inert in the field of constants of the curve.
EXAMPLES:

```
sage: from mclf import *
```

sage: R. $\langle T\rangle=Q Q[]$
sage: K.<zeta> = NumberField($\mathrm{T}^{\wedge} 2+\mathrm{T}+1$)
sage: $\mathrm{A} .\langle\mathrm{X}, \mathrm{y}\rangle=\mathrm{K}[]$
sage: $X=$ SmoothProjectiveCurve ($\left.y^{\wedge} 3-y-x^{\wedge} 2+1+z e t a\right)$
sage: X.prime_of_good_reduction()
5-adic valuation
sage: X.good_reduction (_)
the smooth projective curve with Function field in y defined by $y^{\wedge} 3+4 * y+$ b
$\hookrightarrow 4 * x^{\wedge} 2+u 1+1$
principal_divisor (f)

Return the principal divisor of f.

INPUT:

- f - a nonzero element of the function field of self

OUTPUT: the principal divisor $D=(f)$. This is a list of pairs (P, m), where P is a point and m is an integer.

ramification_divisor()

Return the ramification divisor of self.

OUTPUT:

The ramification divisor of the curve, if the curve is given by a separable model. Otherwise, an error is raised.

So the function field of of the curve is a finite separable extension of a rational function field. Geometrically, this means that the curve X is represented as a separable cover of the projective line. The ramification divisor of this cover is supported in the set of ramification points of this cover. Sheaf theoretically, the divisor represents the sheaf of relative differentials. See:

- Hartshorne, Algebraic Geometry, Definition IV.2.
random_point()
Return a random closed point on the curve.
rational_function_field()
Return the rational function field underlying the function field of X.
By definition, the function field F_{X} of the curve X is a finite separable extension of a rational function field $k(x)$, where k is the base field of X.
separable_model ()
Return the separable model of this curve.

OUTPUT: a smooth projective curve over the same constant base field
The separable model of this curve Y is a curve Y_{s} defined over the same constant base field and whose defining equation realizes Y_{s} as a finite separable cover of the projective line. It comes equipped with a finite, purely inseparable morphism $Y \rightarrow Y_{s}$. In particular, Y_{s} has the same genus as Y.
The inclusion of function fields $\phi: F\left(Y_{s}\right) \rightarrow F(Y)$ can be accessed via the method phi (), the degree of the extension Y / Y_{s} via the method degree_of_inseparability.

singular_locus()

Return the singular locus of the affine model of the curve.

OUTPUT:

a list of discrete valuations on the base field $k(x)$ which represent the x-coordinates of the points where the affine model of the curve given by the defining equation of the function field may be singular.

structure_map()

Return the canonical map from this curve to the projective line.
zeta_function (var_name='T')
Return the Zeta function of the curve.
For any scheme X of finite type over \mathbb{Z}, the arithmetic zeta funtion of X is defined as the product

$$
\zeta(X, s):=\prod_{x} \frac{1}{1-N(x)^{-s}}
$$

where x runs over over all closed points of X and $N(x)$ denotes the cardinality of the residue field of x.
If X is a smooth projective curve over a field with q elements, then $\zeta(X, s)=Z\left(X, q^{-s}\right)$, where $Z(X, T)$ is a rational function in T of the form

$$
Z(X, T)=\frac{P(T)}{(1-T)(1-q T)}
$$

for a polynomial P of degree $2 g$, with some extra properties reflecting the Weil conjectures. See:

- Hartshorn, Algebraic Geometry, Appendix C, Section 1.

Note that that this makes only sense if the constant base field of self is finite, and that $Z(X, T)$ depends on the choice of the constant base field (unlike the function $\zeta(X, s)$!).
mclf.curves.smooth_projective_curves.absolute_degree (K)
Return the absolute degree of a (finite) field.
mclf.curves.smooth_projective_curves.compute_value (v, f)
Return the value of f at v.
INPUT:

- $\mathrm{v}-\mathrm{a}$ function field valuation on F
- f - an element of F

OUTPUT: The value of f at the point corresponding to v.
This is either an element of the residue field of the valuation v (which is a finite extension of the base field of F), or ∞.
mclf.curves.smooth_projective_curves.e_f_of_valuation (v)
Return the ramification index of this valuation.

INPUT:

- v - a function field valuation on an extension of a rational function field

OUTPUT: the ramification index of v over the base field
mclf.curves.smooth_projective_curves.extension_degree (K, L, check=False)
Return the degree of the field extension.
INPUT:

- K, L - two fields, where K has a natural embedding into L
- check (default: False) - boolean

OUTPUT:

the degree $[L: K]$
At the moment, this works correctly only if K and L are finite extensions of a common base field. It is not checked whether K really maps to L.
mclf.curves.smooth_projective_curves.extension_of_finite_field (K, n)
Return a field extension of this finite field of degree n.
INPUT:

- K - a finite field
- n - a positive integer

OUTPUT: a field extension of K of degree n.
This function is useful if K is constructed as an explicit extension $K=K_{0}[x] /(f)$; then K.extension (n) is not implemented.

Note: This function should be removed once trac.sagemath.org/ticket/26103 has been merged.
mclf.curves.smooth_projective_curves.field_of_constant_degree_of_polynomial (G,
turn_field=False)
Return the degree of the field of constants of a polynomial.
INPUT:

- $\mathrm{G}-$ an irreducible monic polynomial over a rational function field
- return_field - a boolean (default:False)

OUTPUT: the degree of the field of constants of the function field defined by G. If return_field is True then the actual field of constants is returned. This is currently implemented for finite fields only.

This is a helper function for SmoothProjectiveCurve.field_of_constants_degree.

```
mclf.curves.smooth_projective_curves.make_finite_field(k)
```

Return the finite field isomorphic to this field.
INPUT:

- k - a finite field

OUTPUT: a triple $\left(k_{1}, \phi, \psi\right)$ where k_{1} is a 'true' finite field, ϕ is an isomorphism from k to k_{1} and ψ is the inverse of ϕ.

This function is useful when k is constructed as a tower of extensions with a finite field as a base field.

Note: This function should be removed once trac.sagemath.org/ticket/26103 has been merged.
mclf.curves.smooth_projective_curves.separate_points (coordinate_functions, valuations)
Add new coordinate functions to separate a given number of points.
INPUT:

- coordinate_functions - a list of elements of a function field F
- valuations - a list of function field valuations on F

OUTPUT: enlarges the list coordinate_functions in such a way that the lists [value (v, x) for x in coordinate_functions], where v runs through valuations, are pairwise distinct.
mclf.curves.smooth_projective_curves.separate_two_points (v1, v2)
Return a rational function which separates two points
INPUT:

- v1, v2 - discrete, nonequivalent valuations on a common function field F

OUTPUT:

An element f of F which takes distinct values at the two points corresponding to v 1 and v 2 .
mclf.curves.smooth_projective_curves.sum_of_divisors (D1, $D 2$)
Return the sum of the divisors D1 and D2.
INPUT:

- D1, D2: divisors on the same curve X

OUTPUT:

D_{1} is replaced by the sum $D_{1}+D_{2}$ (note that this changes D_{1} !).
Here a divisor D is given by a dictionary with entries $(a:(P, m))$, where a is a coordinate tupel, P is a point on X with coordinates a and m is the multiplicity of P in D.

1.2 Morphisms of smooth projective curves

This module defines a class MorphismOfSmoothProjectiveCurves which realizes finite and nonconstant morphism between smooth projective curves.
Let Y and X be smooth projective curves, with function fields F_{Y} and F_{X}, respectively. Then a nonconstant morphism

$$
f: Y \rightarrow X
$$

is completely determined by the induced pullback map on the function fields,

$$
\phi=f^{*}: F_{X} \rightarrow F_{Y}
$$

It is automatic that F_{Y} is a finite extension of $\phi\left(F_{X}\right)$ and that the morphism $\phi: Y \rightarrow X$ is finite.

Note: For the time being, this module is in a very preliminary state. A morphism $\phi: Y \rightarrow X$ as above can be constructed only in the following two special cases:

- X and Y are two projective lines; then F_{X} and F_{Y} are rational function fields in one variable.
- the map $f: Y \rightarrow X$ is the structure map of the curve Y; by this we mean that X is the projective line f the canonical morphism realizing Y as a cover of X.

Moreover, the role of the constant base fields of the two curves still needs to be clarified.

AUTHORS:

- Stefan Wewers (2018-1-1): initial version

EXAMPLES:

```
sage: from mclf import *
sage: FX.<x> = FunctionField(QQ)
sage: R.}\langle\textrm{Y}\rangle=\textrm{FX[]
sage: FY.<y> = FX.extension(y^2-x^3-1)
sage: X = SmoothProjectiveCurve(FX)
sage: Y = SmoothProjectiveCurve(FY)
sage: phi = MorphismOfSmoothProjectiveCurves(Y, X)
sage: phi
morphism from the smooth projective curve with Function field in y defined by y^2 - x^
\hookrightarrow3 - 1
to the smooth projective curve with Rational function field in x over Rational Field,
determined by Coercion map:
    From: Rational function field in x over Rational Field
    To: Function field in y defined by y^2 - x^3 - 1
sage: x0 = PointOnSmoothProjectiveCurve(X, FX.valuation(x-1))
sage: phi.fiber(x0)
[Point on the smooth projective curve with Function field in y defined by y^2 - x^3 --
\hookrightarrow1 with coordinates (1, u1).]
```

class mclf.curves.morphisms_of_smooth_projective_curves.MorphismOfSmoothProjectiveCurves(Y,

Bases: SageObject
Return the morphism between two smooth projective curves corresponding to a given morphism of function fields.

INPUT:

- Y, X - two smooth projective curves
- phi - a morphism from the function field of X into the function field of Y, or None (default: None)

OUTPUT: the morphism $f: Y \rightarrow X$ corresponding to the given morphism of function fields.
If no morphism of function fields is given then it is assumed that the function field of X is the canonical rational subfield of the function field of Y. This means that map $f: Y \rightarrow X$ is the structure map of Y as a cover of the projective line. If this is not the case then an error is raised.

Note: At the moment only the following two special cases are implemented:

- the map $Y \rightarrow X$ is equal to the structural morphism of Y as a cover of the projective line; in particular, X is a projective line
- X and Y are both projective lines

EXAMPLES:

We define a rational map between two projective lines and compute the fiber of a point on the target:

```
sage: from mclf import *
sage: FX.<x> = FunctionField(QQ)
sage: FY.<Y> = FunctionField(QQ)
sage: X = SmoothProjectiveCurve(FX)
sage: Y = SmoothProjectiveCurve(FY)
sage: phi = FY.hom(x^2+1)
sage: psi = MorphismOfSmoothProjectiveCurves(X, Y, phi)
sage: psi
morphism from the smooth projective curve with Rational function field in x over,
\hookrightarrowRational Field
to the smooth projective curve with Rational function field in y over Rational_
\hookrightarrowField,
determined by Function Field morphism:
From: Rational function field in y over Rational Field
To: Rational function field in x over Rational Field
Defn: y |--> x^2 + 1
sage: P = PointOnSmoothProjectiveCurve(Y, FY.valuation(y-2))
sage: psi.fiber(P)
[Point on the smooth projective curve with Rational function field in x overe
\leftrightarrowRational Field with coordinates (1,).,
Point on the smooth projective curve with Rational function field in x over,
Gational Field with coordinates (-1,).]
```

The only other map that is allowed is the structure morphism of a curve as a cover of the projective line:

```
sage: R.<x> = GF(2) []
sage: Y = SuperellipticCurve(x^4+x+1, 3)
sage: phi = Y.structure_map()
sage: X = phi.codomain()
sage: X
the smooth projective curve with Rational function field in x over Finite Field
@of size 2
sage: P = X.random_point()
sage: phi.fiber(P) # random
[Point on superelliptic curve y^3 = x^4 + x + 1 over Finite Field of size 2 with
coordinates (0, 1).,
Point on superelliptic curve y^3 = x^4 + x + 1 over Finite Field of size 2 with
\hookrightarrowcoordinates (0, u1).]
```

codomain()

Return the codomain of this morphism.

domain()

Return the domain of this morphism.

fiber (P)

Return the fiber of this map over the point P (without multiplicities).
INPUT:

- P - a point on the curve X, the codomain of this morphism

OUTPUT: the fiber over P, as a list of points of Y (the domain of this map)
fiber_degree (P)
Return the (absolute) degree of the fiber of this map over the point P.

INPUT:

- P - a point on the curve X (the codomain of this morphism)

OUTPUT: the fiber degree over P, the sum of the degrees of the points on Y (the domain of this morphism) lying above P. Here degree means absolute degree, i.e. with respect to the constant base field of Y (which may differ from the field of constants).

is_structure_map()

Return True if this map is the structure map of the curve Y.
EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = SmoothProjectiveCurve(F)
sage: phi = F.hom(x^2+1)
sage: f = MorphismOfSmoothProjectiveCurves(X, X, phi)
sage: f.is_structure_map()
False
sage: phi = F.hom(x)
sage: f = MorphismOfSmoothProjectiveCurves(X, X, phi)
sage: f.is_structure_map()
True
```

pullback (f)

Return the pullback of a function under this morphism.

```
pullback_map()
```

Return the induced inclusion of function fields.

1.3 Superelliptic curves

A superelliptic curve is a smooth projective curve over a field K which is given generically by an equation of the form

$$
Y: y^{n}=f(x)
$$

where $n \geq 2$ and $f \in K[x]$ is a polynomial over K, of degree at least 2 (and of degree at least 3 if $n=2$). Let

$$
f=c \cdot \prod_{i} f_{i}^{m_{i}}
$$

be the prime factorization of f (where $c \in K^{\times}$and the f_{i} are monic, irreducible and pairwise distinct). We assume that the gcd of the m_{i} is prime to n. This means that the defining equation is irreducible and the curve Y can be considered as a Kummer cover of $X=\mathbb{P}_{K}^{1}$ of degree n.
In this module we define a class SuperellipticCurve which is a subclasses of SmoothProjectiveCurve and whose objects represent superelliptic curves as above.

AUTHORS:

- Stefan Wewers (2018-5-18): initial version

EXAMPLES:

```
sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^4-1, 3)
sage: Y
superelliptic curve y^3 = x^4 - 1 over Rational Field
sage: Y.genus()
3
```

```
sage: Y.kummer_gen()
Y
sage: Y.polynomial()
x^4 - 1
sage: Y.covering_degree()
3
```


Todo:

- override those methods of SmoothProjectiveCurve where we have a faster algorithm in the superelliptic cases

```
class mclf.curves.superelliptic_curves.SuperellipticCurve (f,n,name='y')
    Bases:mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
```

Return the superelliptic curve with equation $y^{n}=f(x)$.

INPUT:

- $\mathrm{f}-\mathrm{a}$ nonconstant polynomial over a field K
- n - an integer ≥ 2
- name - a string (default ' y ')

OUTPUT:

the smooth projective curve Y over K given generically by the equation

$$
Y: y^{n}=f(x)
$$

This means that the function field of Y is an extension of the rational function field in x generated by an element y (the Kummer generator) satisfying the above equation.
It is assumed that the gcd of the multiplicities of the irreducible factors of f is prime to n. Thus, the curve Y is a cover of \mathbb{P}_{K}^{1} of degree n. If this condition is not met, an error is raised. name is the name given to the Kummer generator y.

```
covering_degree()
```

Return the covering degree.
If the curve is given by the equation $y^{n}=f(x)$ then the covering degree degree is n.

kummer_gen ()

Return the Kummer generator of this superelliptic curve.
If the curve is given by the equation $y^{n}=f(x)$ then the Kummer generator is the element y of the the function field.
polynomial()
Return the polynomial defining this curve.
If the curve is given by the equation $y^{n}=f(x)$ then f is this polynomial.

CHAPTER 2

The Berkovich line

2.1 The Berkovich line over a discretely valued field

Let K be a field and v_{K} a discrete valuation on K. Let $F=K(x)$ be a rational function field over K. We consider F as the function field of the projective line \mathbb{P}_{K}^{1} over K. Let X denote the $\left(K, v_{K}\right)$-analytic space associated to \mathbb{P}_{K}^{1}. We call X the Berkovich line with respect to v_{K}.

Note that we do not assume K to be complete with respect to v_{K}. This allows us to work with 'exact' fields, e.g. number fields. As the 'official' definition of K-analytic spaces requires K to be complete, X is really defined over the completion \hat{K} with respect to v_{K}. We do have a continous map

$$
\pi: X \rightarrow \mathbb{P}_{K}^{1}
$$

whose role we discuss below.
We systematically work with additive pseudo-valuations instead of multiplicative seminorms. Thus, we identitfy a point $\xi \in X$ with a (real valued) pseudo-valuation v_{ξ} on F extending v_{K},

$$
v_{\xi}: F \rightarrow \mathbb{R} \cup\{ \pm \infty\}
$$

as follows: the subring

$$
\mathcal{O}_{\xi}:=\left\{f \in F \mid v_{\xi}(f)>-\infty\right\}
$$

is a local subring of F, with maximal ideal

$$
\mathfrak{m}_{\xi}:=\left\{f \in F \mid v_{\xi}(f)=\infty\right\}
$$

Then v_{ξ} induces a discrete valuation on the residue field

$$
K(\xi):=\mathcal{O}_{\xi} / \mathfrak{m}_{\xi}
$$

There are only two kind of points which are relevant for us and which we can represent and compute with:

- points of type I, which are moreover algebraic: these are the points $\xi \in X$ such that $\bar{\xi}:=\pi(\xi)$ is a closed point on \mathbb{P}_{K}^{1}. Then \mathcal{O}_{ξ} is the local ring and $K(\xi)$ the residue field of $\bar{\xi}$. Since $K(\xi) / K$ is a finite field extension, there are finitely many extensions of v_{K} to a discrete valuation on $K(\xi)$; the point $\xi \in \pi^{-1}(\bar{\xi})$ corresponds precisely to the valuation induces by v_{ξ}.
- points of type II: these are the points ξ such that v_{ξ} is a discrete valuation on F. In particular, the local ring \mathcal{O}_{ξ} is equal to F and the image $\bar{\xi}:=\pi(\xi)$ is the generic point of \mathbb{P}_{K}^{1}. A we see below, a point ξ of type II corresponds to a discoid, a certain type of affinoid subdomain of X.

Our choice of the generator x of the function field F, which we keep fixed throughout, yields certain distinguished subsets and points of X, as follows.

The unit disk is the subset

$$
\mathbb{D}:=\left\{\xi \in X \mid v_{\xi}(x) \geq 0\right\}
$$

Note that a point $\xi \in \mathbb{D}$ is uniquely determined by the restriction of v_{ξ} to the polynomial ring $K[x]$.
The Gauss point is the point $\xi^{g} \in \mathbb{D}$ of type II corresponding to the Gauss valuation on $K[x]$, with respect to v_{K}, i.e. by

$$
v_{\xi^{g}}\left(\sum_{i} a_{i} x^{i}\right)=\min _{i} v_{K}\left(a_{i}\right)
$$

The second distinguished is the point at infinity, denoted $\infty \in X$. It is the unique point of type I such that $\pi(\infty)$ is the 'usual' point at infinity on the projective line, with respect to the parameter x. It is characterized by the condition

$$
v_{\infty}\left(\frac{1}{x}\right)=\infty
$$

By a result of Berkovich, the topological space X is a simply connected quasi-polyhedron. Among other things this means that for any two points $\xi_{1}, \xi_{2} \in X$ there exists a unique closed subset

$$
\left[\xi_{1}, \xi_{2}\right] \subset X
$$

which is homeomorphic to the unit interval $[0,1] \subset \mathbb{R}$ in such a way that ξ_{1}, ξ_{2} are mapped to the endpoints 0,1 . It follows that X has a unique partial ordering determined by the following two conditions:

- the Gauss point ξ^{g} is the smallest element
- we have $\xi_{1}<\xi_{2}$ if and only if ξ_{2} lies in a connected component of $X-\left\{\xi_{1}\right\}$ which does not contain ξ^{g}.

A point ξ of type II has a discoid representation as follows. If $\xi=\xi^{g}$ then $D_{\xi^{g}}:=\mathbb{D}$ is defined as the unit disk. Otherwise, D_{ξ} is defined of the set of all points $\xi_{1} \in X$ such that $\xi \leq \xi_{1}$. One can show that D_{ξ} is then of the form

$$
D_{\xi}=\left\{\xi_{1} \mid v_{\xi_{1}}(f) \geq s\right\}
$$

where f is a polynomial in x, irreducible over \hat{K} (or $f=1 / x$ if $\infty \in D_{\xi}$) and s is a rational number. The pair (f, s) determines ξ, but this representation is not unique. We call (f, s) a discoid representation of ξ.
Conversely, if $D \subset X$ is a discoid, i.e. an irreducible affinoid subdomain which becomes a union of closed disks over a finite extension of K, then there exists a unique boundary point ξ of D. We have $D=D_{\xi}$ if and only if D is a standard discoid, i.e. it is either contained in or disjoint from the unit disk.

Note that we can simply extend the discoid representation to points of type I by allowing s to take the value ∞. Then $D_{\xi}=\{\xi\}$ for a point ξ of type I.

AUTHORS:

- Stefan Wewers (2017-02-10): initial version

EXAMPLES:

```
sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: X
Berkovich line with function field Rational function field in x over Rational Field
\hookrightarrowwith 2-adic valuation
```

We define a point of type II via its discoid.:

```
sage: xil = X.point_from_discoid(x^3 + 2, 3)
sage: xil
Point of type II on Berkovich line, corresponding to v(x^3 + 2) >= 3
```

If the affinoid $v(f) \geq s$ is not irreducible, an error is raised.:

```
sage: X.point_from_discoid(x^2-1, 3)
Traceback (most recent call last):
AssertionError: D defined by f=x^2 - 1 and s=3 is not a discoid
```

We can similarly define points which do not lie on the unit disk.:

```
sage: xi2 = X.point_from_discoid(4*x+1, 1)
sage: xi2
Point of type II on Berkovich line, corresponding to v(4*x + 1) >= 1
```

The infimum of a point inside and a point outside the unit disk must be the Gauss point, corresponding to the unit disk.:

```
sage: xil.infimum(xi2)
Point of type II on Berkovich line, corresponding to v(x) >= 0
sage: X.gauss_point()
Point of type II on Berkovich line, corresponding to v(x) >= 0
```

Some points of type I are limit points, i.e. they can only be approximated by points of type II. For instance, the zeroes of a polynomial which is irreducible over the ground field \mathbb{Q}, but not over its completion \mathbb{Q}_{2} :

```
sage: f = 2**^2 + x + 1
sage: f.factor()
(2) * (x^2 + 1/2*x + 1/2)
sage: D = X.divisor(f)
sage: D
[(Point of type I on Berkovich space approximated by v(2*x + 1) >= 1, with equation
4* x^2 + 2*x + 2 = 0,
    1),
    (Point of type I on Berkovich space approximated by v(x + 1) >= 1, with equation 4*x^
\hookrightarrow2+2*x + 2 = 0,
    1),
    (The point at infinity on the Berkovich line, -2)]
sage: xi = D[0][0]
sage: xi.equation()
4*x^2 + 2*x + 2
```

Note that the point ξ lies outside and its Galois conjugate point lies inside of the unit disk. This shows that issue \#39 has been fixed.

MCLF Documentation

TO DO:

- more doctests!

```
class mclf.berkovich.berkovich_line.BerkovichLine( }F,vK\mathrm{ )
```

Bases: Sage0bject
The class of a Berkovich projective line over a discretely valued field.
Let K be a field and v_{K} a discrete valuation on K. Let $F=K(x)$ be a rational function field over K. We consider F a the function field of the projective line X over K. Let X denote the $\left(K, v_{K}\right)$-analytic space associated to X. Then a point ξ on X may be identified with a (real valued) pseudo-valuation v_{ξ} on F extending v_{K}.
INPUT:

- F - a rational function field over a base field K
- vK - a discrete valuation on the base field K
find_zero (xil, xi2,f)
Return the point between xil and xi2 where f has valuation 0 .
INPUT:
- xi1, xi2 - points on the Berkovich line such that $\xi_{1}<\xi 2$
- \mathbf{f} - \mathbf{a} nonconstant rational function; $\mathbf{i t}$ is assumed that the signs of the valuations of \mathbf{f} at $\xi 1$ and $\xi 2$ are different

OUTPUT:

The smallest point between $\xi 1$ and $\xi 2$ where the valuation of f is zero.
NOTE:
We are assuming for the moment that the function

$$
v \mapsto v(f)
$$

is affine (i.e. has no kinks) on the interval $\left[\xi_{1}, \xi_{2}\right]$.
EXAMPLES:

```
sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: xil = X.gauss_point()
sage: xi2 = X.point_from_discoid(x^4+2* x^2+2, 10)
sage: X.find_zero(xi1, xi2, (x^4+2*x^2+2)/4)
Point of type II on Berkovich line, corresponding to v(x^4 + 2* (^^2 + 2) >= 2
sage: xi3 = X.point_from_discoid(4*x^4+2*x^2+1, 10)
sage: f = 2*x^3
sage: xil.v(f), xi3.v(f)
(1, -1/2)
sage: X.find_zero(xil, xi3, f)
Point of type II on Berkovich line, corresponding to v(1/x) >= 1/3
```

Todo: Remove the assumption on the kinks.
gauss_point()
Return the Gauss point of self.
The Gauss point is the type-II-point corresponding to the Gauss valuation on $K[x]$. Its discoid is the unit disk.

EXAMPLES:

```
sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: X.gauss_point()
Point of type II on Berkovich line, corresponding to v(x) >= 0
```

infty()
Return the point ∞.
EXAMPLES:

```
sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: X.infty()
The point at infinity on the Berkovich line
```

point_from_pseudovaluation (v)
Return the point on the Berkovich line corresponding to the pseudovaluation v.
INPUT:

- $\mathbf{v}-\mathbf{a}$ discrete pseudovaluation on the function field of self, extending the base valuation v_{K}

OUTPUT:
The point ξ on the Berkovich line $X=$ "'self" corresponding to the pseudo valuation v on the function field of X.

EXAMPLES:

```
sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: v = F.valuation(x)
sage: X.point_from_pseudovaluation(v)
Traceback (most recent call last):
AssertionError: v is not an extension of the base valuation
sage: v = F.valuation(GaussValuation(F._ring, v_2))
sage: X.point_from_pseudovaluation(v)
Point of type II on Berkovich line, corresponding to v(x) >= 0
```

point_from_pseudovaluation_on_polynomial_ring ($v 0$, parameter=None)
Return the point corresponding to a pseudo-valuation on a polynomial ring.
INPUT:

- v0 - a discrete pseudo-valuation on a polynomial ring over the base field K, extending the base valuation v_{K}
- parameter - a parameter for the function field (default: None)

OUTPUT:
The point on this Berkovich line corresponding to v0, with respect to parameter. If parameter is not given, we assume that it is the standard parameter x.
EXAMPLES:

```
sage: from mclf import *
sage: from sage.all import GaussValuation
sage: F.<x> = FunctionField(QQ)
sage: v2 = QQ.valuation(2)
sage: X = BerkovichLine(F, v2)
sage: v0 = GaussValuation(F._ring, v2)
sage: X.point_from_pseudovaluation_on_polynomial_ring(v0, 2*x)
Point of type II on Berkovich line, corresponding to v(x) >= 1
```

point_from_valuation(v)
Return the point corresponding to a discrete valuation.

INPUT:

- v - a discrete valuation on the function field of this Berkovich line

OUPUT:
The point corresponding to v .
If the restriction of v to the constant base field is trivial, then we obtain a point of type I. Otherwise, the restriction of v to K must be equivalent to the base valuation v_{K}, and in this case we obtain a point of type II.

EXAMPLES:

```
sage: from mclf.berkovich.berkovich_line import BerkovichLine
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: v = F.valuation(x^2+1/2)
sage: X.point_from_valuation(v)
Point of type I on Berkovich line given by x^2 + 1/2=0
sage: xi = X.point_from_discoid(x, l/2)
sage: xil = X.point_from_valuation(xi.valuation())
sage: xi.is_equal(xil)
True
```

class mclf.berkovich.berkovich_line.PointOnBerkovichLine
Bases: SageObject
A point on a Berkovich projective line.
We only allow two different types of points:

- Type I, algebraic: these are the points that come from a closed point on the (algebraic) projective line over the completed base field.
- Type II: these are the points which correspond to discrete valuations on the function field whose residue field is a function field over the residue base field
In particular, the Gauss valuation on $F=K(x)$ with respect to the parameter x corresponds a point ξ^{g} of type II on X which we call the Gauss point.

The set X has a canonical partial ordering in which the Gauss point is the smallest elements. All point of type I are maximal elements.
base_field()
Return the base field of this Berkovich line.
base_valuation()
Return the valuation on the base field of this Berkovich line.

berkovich_line()

Return the Berkovich line of which this point lies.

function_field()

Return the function field of this Berkovich line.

inverse_parameter()

Return the inverse parameter of the polynomial ring on which self is defined.
Let $\phi: F \rightarrow F$ be the automorphism of the function field $F=K(x)$ such that $Y:=\phi(x)$ is the parameter used to define self. Then the inverse parameter is $z:=\phi^{-1}(x)$.

EXAMPLES:

```
sage: from mclf import *
sage: from sage.all import GaussValuation
sage: F.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(F, v_2)
sage: v0 = GaussValuation(F._ring, v_2)
sage: xi = X.point_from_pseudovaluation_on_polynomial_ring(v0, x/2)
sage: xi
Point of type II on Berkovich line, corresponding to v(1/x) >= 1
sage: xi.parameter()
1/x
sage: xi.inverse_parameter()
1/x
```

At the moment, only parameters y of the form $c^{*} \mathrm{x}$ or $1 / \mathrm{x}$ are allowed.

```
sage: y = (2*x-1)/(x+2)
sage: xi = X.point_from_pseudovaluation_on_polynomial_ring(v0, y)
Traceback (most recent call last):
AssertionError: y must be c*x or 1/x
```


parameter()

Return the parameter of the polynomial ring on which self is defined.
The point self corresponds to a discrete pseudo-valuation v which is the extension of a pseudo-valuation v_{0} on $K[y]$, where y is the parameter in question.
class mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine (X, v)
Bases: mclf.berkovich.berkovich_line.PointonBerkovichLine
A point of type II on a Berkovich line.
INPUT:

- X - a Berkovich line over a valued field K
- v - a discrete valuation on the function field of X extending the base valuation

OUTPUT:

The type-II-point ξ on X corresponding to v.
It is also possible to replace v by a pair $(\mathrm{v} 0, \mathrm{y})$, where v 0 is a discrete valuation on a polynomial ring $K[x]$, and y is a parameter for the function field of the Berkovich line. Then ξ is the point corresponding to the valuation v on the function field $F=K(x)$ which pulls back to v_{0} via the inclusion $K[x] \rightarrow F$ that sends x to y.

NOTE:
At the moment, we only allow the generators y of the form $c x$ or $1 / x$.
approximation()
Return an approximation of self. For a point of type II, self is already an approximation of itself.

discoid (certified_point=None)

Return a representation of the discoid of which this type II point is the unique boundary point.
INPUT:

- certified_point (default=None) - this argument is not used for type-II-points

OUTPUT:

A pair (f, s), where f is a polynomial in the generator x of the function field of X which is irreducible over \hat{K}, or $1 / x$, and where s is a nonnegative rational number. This data represents a discoid D via the condition $v_{\xi}(f) \geq s$.

Then self is the unique boundary point of D, and if, moreover, self is not the Gauss point then D contains precisely the points ξ which are greater or equal to self.
The representation (f, s) is normalized as follows:

- if this point lies in the closed unit disk then f is monic and integral, and $s \geq 0$. We either have $(f, s)=(x, 0)$ (if this point is the Gauss point and D the closed unit disk) or $s>0$.
- if this point is not in the closed unit disk then $s>0$, and f is either integral with constant term 1 and only strictly positive slopes, or $f=1 / x$. In the first case, D does not contain the point at infinity, in the second case it does. In both cases, D is disjoint from the closed unit disk.

EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(F, v_2)
sage: X.gauss_point().discoid()
(x, 0)
sage: X.infty().discoid()
(1/x, +Infinity)
```

improved_approximation()

Return an improved approximation of self.
This is meaningless for type-II-points, so self is returned.

```
is_gauss_point()
```

Return True if self is the Gauss point.
is_in_unit_disk()
True is self is contained in the unit disk.

is_inductive()

True if self corresponds to an inductive pseud-valuation. This is always true for points of type II.

is_infinity()

Check whether self is the point at infinity.
is_limit_point()
True is self corresponds to a limit valuation. This is never true for points of type II.
parameter()
Return the parameter with respect to which this point is defined.
This is either x (if the point lies in the unit disk) or $1 / x$ otherwise.
pseudovaluation()
Return the pseudovaluation corresponding to this point.
OUTPUT:
Since self is a point of type II, the output is a discrete valuation on the function field of the underlying Berkovich line.
pseudovaluation_on_polynomial_ring()
Return the pseudo-valuation on the polynomial ring ' $\mathrm{K}[\mathrm{y}$ ' ' corresponding to self, where y is either x or $1 / x$ depending on whether self lies in the standard closed unit disk or not.

type ()

Return the type of self.
valuation()
Return the valuation corresponding to this point.
OUTPUT:
The discrete valuation on the function field of the underlying Berkovich line corresponding to this point.
class mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine (X, v)
Bases: mclf.berkovich.berkovich_line. PointonBerkovichLine
An algebraic point of type I.

INPUT:

- X - a Berkovich projective line over a valued field K
- v - an infinite discrete pseudovaluation on the function field $F=K(x)$

OUTPUT: a point of type I on X
Here the point ξ on X corresponds to the discrete pseudo-valuation v on the function field $F=K(x)$.
Alternatively, v can be a pair $\left(v_{0}, y\right)$, where v_{0} is an infinite discrete pseudo-valuation on a polynomial ring over K and y is a generator of the function field F. Then v is the infinite discrete pseudo-valuation of F whose restriction to the subring ring $K[y]$ is equal to v_{0}.
approximation (certified_point=None, require_maximal_degree=False)
Return an approximation of this point.
INPUT:

- certified point (default=None) - a point on the Berkovich line
- require_maximal_degree (default=False) - boolean

OUTPUT:

A a point which is inductive and approximates self, in such a way that we can distinguish self from certified point.

If self is an inductive point, then self is returned. Otherwise, self is a limit point, and the output is a point of type II greater or equal to self (i.e. corresponding to a discoid containing self). If certified_point is not None and distinct from self, then the output is not greater or equal to certified_point.

If require_maximal_degree is True then any approximation will have the same degree as the limit point. Here the degree of an inductive point means the degree of the last key polynomial describing it, and the degree of a type-I-point is the degree of its minimal polynomial.

discoid (certified_point=None)

Return a representation of a discoid approximating self.
INPUT:

- certified_point (default=None) - a point of type II

OUTPUT:
A pair (f, s), where f is a polynomial in the generator x of the function field of X which is irreducible over \hat{K}, or $f=1 / x$, and where s is a nonrational number, or is equal to ∞. This data represents a (possibly degenerate) discoid D via the condition $v_{\xi}(f) \geq s$.
D as above is either the degenerate discoid with $s=\infty$ which has self as the unique point, or D is an approximation of self (this simply means that self is contained in D). If certified_point is given and is not equal to self then it is guaranteed that it is not contained in D.

We further demand that the discoid D is either contained in the closed unit disk, or is disjoint from it. Such discoids correspond one-to-one to points of type II.

equation()

Return an equation for the Galois orbit of this point.
OUTPUT:
An element f of the function field of X which is either an irreducible polynomial in the standard generator x, or is equal to $1 / x$, and such that $v_{\xi}(f)=\infty$.
function_field_valuation()
Return the function field valuation corresponding to this point
OUTPUT:
the discrete valuation on the function field $F=K(x)$ which corresponds to the image of this point on $X=\mathbb{P}_{K}^{1}$ (which is, by hypothesis, a closed point).

improved_approximation()

Return an improved approximation of self.

```
is_gauss_point()
```

Return True if self is the Gauss point.

```
is_in_unit_disk()
```

True is self is contained in the unit disk.
is_inductive()
Check whether this points corresponds to an inductive valuation.

```
is_limit_point()
```

Check whether this point corresponds to a limit valuation.
pseudovaluation()
Return the pseudovaluation corresponding to this point.
OUTPUT:
a discrete pseudovaluation on the rational function field of the Berkovich line of which self is a point.
pseudovaluation_on_polynomial_ring()
Return the pseudovaluation representing self.

OUTPUT:

A discrete pseudovaluation on a polynomial subringring $K[y]$ from which self is induced. It is either inductive or a limit valuation.
type ()
Return the type of self
valuation()
Return the function field valuation corresponding to this point.
OUTPUT:
the normalized discrete valuation on the function field of the Berkovich line corresponding to this point of type I.

This should not be confused with the pseudovaluation usually associated with a type-I-point.
EXAMPLES:

```
sage: from mclf.berkovich.berkovich_line import BerkovichLine
sage: F.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(F, v_2)
sage: X.gauss_point().valuation()
2-adic valuation
sage: xi = X.point_from_discoid(x+1, Infinity)
sage: xi.valuation()
(x + 1)-adic valuation
```

```
mclf.berkovich.berkovich_line.inverse_generator (y)
```

Return the inverse generator of a given generator of a rational function field.
INPUT:

- y - a generator of a rational function field $F=K(x)$

OUTPUT:
The inverse generator for y. So if $\phi: F \rightarrow F$ is the automorphism of F such that $\phi(x)=y$ then $z:=\phi^{-1}(x)$ is the inverse generator.
mclf.berkovich.berkovich_line.is_generator (y)
Test whether an element is a generator of a rational function field.
INPUT:

- y - an element of a rational function field $F=K(x)$

OUTPUT:
True if $F=K(y)$, False otherwise.
mclf.berkovich.berkovich_line.valuation_from_discoid($v K, f, s$)
Return the inductive valuation corresponding to a discoid.

INPUT:

- vK - a discrete valuation on a field K
- f - a nonconstant monic integral polynomial over K
- s-a nonnegative rational number, or ∞

OUTPUT:

an inductive valuation v on the domain of f , extending vK , corresponding to the discoid D defined by $w(f) \geq s$. In other words, this means that D defined above is irreducible (and hence a discoid), and v is its unique boundary point.

If D is not irreducible, an error is raised.
Note that s maybe ∞, in which case the discoid is degenerate and consists of a single point of type I. This means that the resulting valuation is actually a pseudo-valuation.

ALGORITHM:

We use the function valuations_from_inequality which computes more generally the valuations corresponding to the irreducible components of the affinoid defined by an inequality $w(f) \leq s$. We then test whether this affinoid is connected, i.e. corresponds to a single valuation.

EXAMPLES:

An example that created an error in a previous version:

```
sage: from mclf import *
sage: R.<x> = QQ[]
sage: v_2 = QQ.valuation(2)
sage: f = x^6 - 8030/3241*x^5 + 24468979*x^4 + 14420644*x^3 + 24136511**^2 + +
\hookrightarrow5386/1505*x + 3981/5297
sage: valuation_from_discoid(v_2, f, 76/15)
[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 2/3, v(x^3 + 3*x^2 + U
\hookrightarrow3*x - 3) = 38/15 ]
sage: _(f)
76/15
```

We can create pseudovaluations corresponding to points if type I by setting $s:=\infty$:

```
sage: valuation_from_discoid(v_2, x^2+2, Infinity)
[ Gauss valuation induced by 2-adic valuation, v(x) = 1/2, v(x^2 + 2) = +Infinity,
\hookrightarrow
```

mclf.berkovich.berkovich_line.valuations_from_inequality $(v K, f, s, v 0=N o n e)$
Return the list of inductive pseudo-valuations corresponding to the given inequalities.

INPUT:

- vK - a discrete valuation on a field K
- f - a nonconstant monic integral polynomial over K
- s - a nonnegative rational number, or ∞
- v0 - an inductive valuation on the parent of f (default: None)

OUTPUT:
A list of inductive valuations on the domain of $£$, extending $v K$, corresponding to the boundary points of the irreducible components of the affinoid defined by the condition $v(f) \geq s$. Note that these components are all discoids (possibly degenerate).

If $s=\infty$ then the list consists of pseudo-valuations and may contain algebraic limit valuations.
If v_{0} is given then the output only includes the valuations greater or equal to v_{0}. So if v_{0} is not given, we may assume that v_{0} is the Gauss valuation.

ALGORITHM:

This is a modification of the MacLane algorithm. If $v_{0}(f)>s$ or if the effective degree of f with respect to v_{0} is zero, then no valuation with the above properties can exist. If $v_{0}(f)=s$ and the effective degree is positive, then $v:=v_{0}$ is the only solution.

Otherwise, we consider the equivalence decomposition of f with respect to v_{0}, such that

$$
f \sim_{v_{0}} u \cdot \prod_{i=1}^{r} \phi_{i}^{e_{i}}
$$

By assumption, $r \geq 1$. For each i, we determine the proper augmentation

$$
v_{i}:=\left[v_{0}, v_{i}\left(\phi_{i}\right)=t_{i}\right]
$$

which is maximal under the conditions that

- $v_{i}(f) \leq s$, and
- the effective degree of f with respect to v_{i} is equal to e_{i}.

Every valuation v we are looking for must be greater or equal to one of the v_{i}. Therefore, we can apply our algorithms inductively.
EXAMPLES:

```
sage: from mclf import *
sage: vK = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: f = x^ 2* (x^4+2* *^^2+8)
sage: valuations_from_inequality(vK, f, 1)
[[ Gauss valuation induced by 2-adic valuation, v(x) = 1/6 ]]
sage: valuations_from_inequality(vK, f, 4)
[[ Gauss valuation induced by 2-adic valuation, v(x) = 1/2, v(x^2 + 2) = 2 ],
    [ Gauss valuation induced by 2-adic valuation, v(x) = 3/4 ]]
sage: valuations_from_inequality(vK, f, Infinity)
[[ Gauss valuation induced by 2-adic valuation, v(x) = 1/2, v(x^2 + 2) = 2 , ...与
@],
    [ Gauss valuation induced by 2-adic valuation, v(x + 2) = 2 , .. ],
    [ Gauss valuation induced by 2-adic valuation, v(x) = +Infinity ]]
```

We test some boundary cases:

```
sage: valuations_from_inequality(vK, R(1), 0)
[Gauss valuation induced by 2-adic valuation]
sage: valuations_from_inequality(vK, R(1), 1)
[ ]
```


2.2 Finite subtrees of the Berkovich line

Let K be a field and v_{K} a discrete valuation on K. Let $X=\mathbb{P}_{\mathbb{K}}^{\not K}$ be the projective line over K. Let $X^{a n}$ denote the $\left(K, v_{K}\right)$-analytic space associated to X. We call $X^{a n}$ the Berkovich line over K.

Let ξ^{g} be the Gauss point on $X^{a n}$, corresponding to the Gauss valuation on the function field of X with respect to the canonical parameter x. Then $X^{a n}$ has a natural partial ordering for which ξ^{g} is the smallest element. With respect to this partial ordering, any two elements have a unique infimum.

A Berkovich tree is a finite (nonempty) subset T with the property that for any two elements in T the infimum is also contained in T. In particular, a T has a least element, called the root of the tree.

Given any finite subset S of $X^{a n}$, there is now a unique minimal subtree T contaning S. We call T the tree spanned by S.

This module realizes finite subtrees of $X^{a n}$ as combinatorial objects, more precisely as finite rooted combinatorial trees. So a tree consists of a root, and a list of children. If the tree is a subtree of another tree, then there is a link to its parent.

AUTHORS:

- Stefan Wewers (2017-02-13): initial version

EXAMPLES:

```
<Lots and lots of examples>
```

class mclf.berkovich.berkovich_trees.BerkovichTree (X, root=None, children=None, parent=None)
Bases: SageObject
Create a new Berkovich tree T.

INPUT:

- X - a Berkovich line
- root - a point of X (default: None)
- children - a list of Berkovich trees on $X($ default $=$ None $)$
- parent - a Berkovich tree or None (default: None)

OUTPUT:

A Berkovich tree T on X with root root, children children and parent parent. T may be empty (no root and no children), but if there are children then there must be root.

EXAMPLES:

```
sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: T = BerkovichTree(X); T
Berkovich tree with 0 vertices
sage: xi = X.gauss_point()
sage: T.find_point(xi)
```

adapt_to_function (f)

Add all zeroes and poles of f as leaves of the tree.
INPUT:

- f - a rational function on X

OUTPUT:
the new tree obtained by adding all zeroes and poles of f as vertices to the old tree.

```
add_point (xi)
```

Return the tree spanned by self and the point xi.

INPUT:

- xi - A point of type I or II on X

OUTPUT: T_{1}, T_{2}, where

- T_{1} is the tree obtained from T_{0} as a vertex.
- T_{2} is the subtree of T_{1} with root ξ

If T_{0} has a parent, then the root of T_{0} must be less than ξ. Therefore, the parent of T_{1} will be the original parent of T_{0}.

Note that this command may change the tree T_{0} ! For instance, ξ may become the root of T_{1} and then T_{0} has T_{1} as new parent.

adjacent_vertices (xiO)

List all vertices of the tree adjacent to a given vertex.
berkovich_line()
Return the Berkovich line underlying this tree.

children()

Return the list of all children.
This is a deep copy of the internal list of children! Therefore, it cannot be used to change the tree.
copy ()
Return a copy of self.
direction_from_parent ()
Return the direction from the parent.
OUTPUT: the type V point η representing the direction from the root of the parent of self to the root of self.

If self has no parent, an error is raised.

direction_to_parent()

Return the direction to the parent.
OUTPUT: the type V point η representing the direction from the root of self to the root of its parent.
If self has no parent, an error is raised.
The direction is not well defined if the root of self is a point of type I. Therefore, an error is raised in this case.

find_point (xi)

Find subtree with root xi.

INPUT:

- xi-a point on the Berkovich line underlying self

OUTPUT:

The subtree T of self with root xi, or None if xi is not a vertex of self.
EXAMPLES:

```
sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: T = BerkovichTree(X); T
Berkovich tree with 0 vertices
```

Searching in the empty tree does not give an error anymore.:

```
sage: xi = X.gauss_point()
sage: T.find_point(xi)
sage: T.add_point(xi)
(Berkovich tree with 1 vertices, Berkovich tree with 1 vertices)
sage: T.find_point(xi)
Berkovich tree with 1 vertices
```


graph ()

Return a graphical representation of self.
OUTPUT:
G, vert_dict,
where G is a graph object and vert_dict is a dictionary associating to a vertex of G the corresponding vertex of self.
has_parent ()
Return True if self has a parent.

```
is_leaf()
```

Return True if self is a leaf.
leaves (subtrees=False)
Return the list of all leaves.
If subtrees is True, then we return the list of subtrees corresponding to the leaves.
make_child (new_child, check=True)
Make new_child a child of self.
INPUT:

- new_child - a Berkovich tree
- check - a boolean (default False)

We make the tree new_child a child of self. For this to make sense, two conditions have to be satisfied:

- the root of new_child has to be strictly greater than the root of self
- the root of new_child has to be incomparable to the roots of the already existing children of self

These conditions are checked only if check ist True.
Note:
This changes both trees self and new_child.
make_parent (parent)
add parent as parent of self.
parent()
Return the parent of self.
paths ()
Return the list of all directed paths of the tree.
OUTPUT:
the list of all directed paths of the tree, as a list of pairs $\left(\xi_{1}, \xi_{2}\right)$, where ξ_{2} is a child of ξ_{1}.
permanent_completion()
Return the permanent completion of self.
OUTPUT:
A Berkovich tree T_{1} which is the permanent completion of self.
A Berkovich tree tree T on a Berkovich line X over $\left(K, v_{K}\right)$ is called permanently complete if for all finite extensions (L, v_{L}) of $\left(K, v_{K}\right)$, the inverse image of the set of vertices of T in X_{L} is again the set of vertices of a Berkovich tree. It is easy to see that for any Berkovich tree T there exists a minimal refinement T_{1} which is permanently complete. It is called the permanent completion of T.

ALGORITHM:

Let ξ_{0} be the root and ξ_{1}, \ldots, ξ_{n} the leaves of T. To compute T_{1} we consider, for $i=1, \ldots, n$, the path $\gamma=\left[\xi_{0}, \xi_{n}\right]$ and the function on γ which maps a point ξ to the number of geometric components of the discoid D_{ξ}. We add the jumps of this function to T. Having done this for all i we obtain the permant completion T_{1} of T.

EXAMPLES:

```
sage: from mclf import *
sage: FX.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(FX, v_2)
sage: xi0 = X.point_from_discoid(x^4+2, 5)
sage: T = BerkovichTree(X, xiO)
sage: T.permanent_completion()
Berkovich tree with 3 vertices
```

position (xi)
Find the position of $x i$ in the tree $T=s e l f$.

INPUT:

- xi - a point on the Berkovich line underlying T

OUTPUT:

xi1, T1, T2, is_vertex,
where

- xil is the image of xi under the retraction map onto the total space of T
- T1 is the smallest subtree of T whose total space contains xil
- T 2 is the child of T 1 such that xi1 lies on the edge connecting T 1 and T 2 (or is equal to T 1 if xi1 is the root of T1)
- is_vertex is True if xil is a vertex of T (which is then the root of T1) or False otherwise
print_tree (depth=0)
Print the vertices of the tree, with identation corresponding to depth.
It would be nicer to plot the graph and then list the points corresponding to the vertices.

MCLF Documentation

remove_child (child)

Remove child from list of children of self.
INPUT:

- child-a Berkovich tree

We remove child from the list of children of self. If child is not in this list, an error is raised.
Note:
This function changes both self and child.
remove_point (xi, test_inequality=True)
Remove a point from the tree, if possible.
INPUT:

- xi - a point of type I or II on the Berkovich line
- test_inequality -- a boolean (default: ‘`True)

OUTPUT:

the tree obtained from self by removing, if possible, the vertex with root ξ.
Removing the vertex with root ξ is possible if a vertex with root ξ exists, and if it has at most one child.
Otherwise, nothing is changed.
Note that the vertex to be removed may be the root of this tree. If this is the case and there is no child, then an empty tree is return and the tree is remove as a child from its parent.

If test_inequality is False then it is assumed that ξ is greater or equal to the root of self. This saves us a test for inequality.
EXAMPLES:

```
sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: T = BerkovichTree(X)
sage: T, _ = T.add_point(X.gauss_point())
sage: T = T.remove_point(X.gauss_point()); T
Berkovich tree with 0 vertices
sage: xi_list = [xi for xi, m in X.divisor(x*(x^2+2))]
sage: for xi in xi_list: T, _ = T.add_point(xi)
sage: T
Berkovich tree with 5 vertices
sage: T.remove_point(xi_list[0])
Berkovich tree with 4 vertices
```

root ()

Return the root of the tree.
subtrees ()
Return the list of all subtrees.

vertices()

Return the list of all vertices.

```
mclf.berkovich.berkovich_trees.component_jumps (xi0, xil)
```

Helper function for permanent_completion.
mclf.berkovich.berkovich_trees.create_graph_recursive (T, G, vertex_dict, root_index)
Create recursively a graph from a Berkovich tree.
mclf.berkovich.berkovich_trees.replace_subtree ($T 1, T 2$)
Replace a subtree of a Berkovich tree by another tree.

INPUT:

- T1, T2 - Berkovich trees with the same root

It is assumed that T_{1} has a parent, so it is a proper subtree of an affinoid tree T_{0}. We replace the subtree T_{1} with T_{2}.

NOTE:

This changes the tree `T_O`; therefore this function must be
used carefully.

2.3 Points of type V on the Berkovich line

Let $X^{a n}$ be a Berkovich line over a discretely valued field K. A "point" η of type V on $X^{a n}$ corresponds to a pair (v, \bar{v}), where v is a type-II-valuation and \bar{v} is a function field valuation on the residue field of v. We call v the "major valuation" and \bar{v} the "minor valuation" associated to η.
Note that η is not, properly speaking, a point on the analytic space $X^{a n}$, but rather a point on the adic space $X^{a d}$.
Equivalent ways to describe η are:

- the rank-2-valuation given as the composition of v and \bar{v}
- a "residue class" on $X^{a n}$; more precisely, η corresponds to a connected component of $X^{a n}-\{\xi\}$, where ξ is the type-II-point corresponding to v (and then ξ is the unique boundary point of the residue class)
- an "open discoid": more precise, a pair (ϕ, s), where ϕ is a rational function such that the open discoid

$$
D=\{v \mid v(\phi)>s\}
$$

is the residue class corresponding to η. Moreover, either ϕ of $1 / \phi$ is a monic, integral and irreducible polynomial in x or in $1 / x$.

- a "tangent vector" on $X^{a n}$; more precisely a group homomorphism

$$
\partial: K(x)^{*} \rightarrow \mathbb{Z}
$$

with the following properties: let (ϕ, s) be the discoid representation of η. We define, for $t \geq s$, the valuation v_{t} as the valuation corresponding to the boundary point of the open discoid $v(\phi)>t$. Then $\partial(f)$ is the right derivative at $t=s$ of the function

$$
t \mapsto v_{t}(f)
$$

The most convenient way to determine a point of type V is as follows. Let ξ_{1} be a point of type II and ξ_{2} be of type I or II, distinct from ξ_{1}. Then

$$
\eta=\eta\left(\xi_{1}, \xi_{2}\right)
$$

is the point of type V corresponding to the connected component of $X-\left\{\xi_{1}\right\}$ containing ξ_{2}. We call η the direction from ξ_{1} towards ξ_{2}.
class mclf.berkovich.type_V_points.TypeVPointOnBerkovichLine (xiO, xil)
Bases: SageObject
A point of type V on the Berkovich line.
Let ξ_{1} be a point of type II, and ξ_{2} a point of type I or II. Then we can define the point of type $\mathrm{V} \eta:=\eta\left(\xi_{1}, \xi_{2}\right)$ as the unique residue class with boundary point ξ_{1} containing ξ_{2}.

INPUT:

- xio - point of type II
- xi1 - arbitrary point of X , distinct from xi0

OUTPUT:

The type-V-point corresponding to the connected component of $X^{a n}-\xi 0$ which contains $\xi 1$.
EXAMPLES:

```
sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(2)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)
sage: xil = X.point_from_discoid(x,1)
sage: xi2 = X.point_from_discoid(x^2+4,3)
sage: eta = TypeVPointOnBerkovichLine(xi1, xi2)
```

We see that et a represents an open disk inside the closed unit disk.

```
sage: eta
Point of type V given by residue class v(x + 2) > 1
```

Here is an example of a type-V-point representing an open disk in the complement of the closed unit disk:

```
sage: xi0 = X.gauss_point()
sage: xi3 = X.point_from_discoid(2*x+1, 2)
sage: eta = TypeVPointOnBerkovichLine(xi0, xi3)
sage: eta
Point of type V given by residue class v(1/x) > 0
```

We check that xi0 lies outside the open disk and xi3 inside:

```
sage: eta.is_in_residue_class(xi0)
False
sage: eta.is_in_residue_class(xi3)
True
sage: xi4 = X.point_from_discoid(2*x+1, 4)
sage: TypeVPointOnBerkovichLine(xi3, xi4)
Point of type V given by residue class v((2*x + 1)/x) > 3
sage: TypeVPointOnBerkovichLine(xi4, xi3)
Point of type V given by residue class v(1/2*x/(x + 1/2)) > -5
```

The following example shows that the minor valuation is computed correctly

```
sage: xi5 = X.point_from_discoid(1/x,1)
sage: eta = TypeVPointOnBerkovichLine(xi0,xi5)
sage: eta
Point of type V given by residue class v(1/x) > 0
```

(continues on next page)
sage: eta.minor_valuation()
Valuation at the infinite place
berkovich_line()
Return the Berkovich line underlying the point.
boundary_point ()
Return the boundary point of the type-V-point.
minor_valuation()
Return the minor valuation of this type V point.
open_discoid()
Return the representation of self as an open discoid.
INPUT:

- self: a point of type V on a Berkovich line

OUTPUT:
a pair (ϕ, s), where ϕ is a rational function and s a rational number is such that

$$
D=\{v \in X \mid v(\phi)>s\}
$$

is the open discoid representing the type-V-point self.
Either ϕ of $1 / \phi$ is a monic, integral and strongly irreducible polynomial in x or in $1 / x$.
point_inside_discoid (t)
Return the point inside the residue class at the value t.
The type-V-point corresponds to an open discoid defined by

$$
v(\phi)>s
$$

For for a rational number $t>s$ we can define the type-II-point ξ_{t} corresponding to the closed discoid defined by

$$
v(\phi)>=t
$$

If $t=\infty$ we obtain the type-I-point corresponding to $\phi=0$.
INPUT:

- t - a rational number or Infinity

OUTPUT:

The point ξ_{t} inside the residue class corresponding to the closed discoid defined by $v(\phi)>=t$.
If $t<=s$ then an error is raised.

2.4 Affinoid subdomains of the Berkovich line

Let K be a field, v_{K} a discrete valuation on K and X the Berkovich line over K, with respect to v_{K}.
In this file we realize a Sage class which allows us to create and work with strictly affinoid subdomains of X.

Let T be a Berkovich tree in X and let $r: X \rightarrow T$ denote the canonical retraction map. Let S be a nonempty proper subset of $V(T)$. We define \bar{S} as the union of S and of all edges connecting two points of S. Then the inverse image $U:=r^{-1}(\bar{S})$ is an affinoid subdomain of X. We use the notation $U=U(T, S)$.
We say that a Berkovich tree T supports an affinoid domain U if there exists a nonempty proper subset S of $V(T)$ with $U=U(T, S)$. If this is the case then S consists exactly of the vertices of T which lie in U.

Given any affinoid domain U, there exists a unique minimal tree T which supports U. Moreover, every tree T^{\prime} which contracts to T^{\prime} supports U as well.

AUTHORS:

- Stefan Wewers (2017-07-29): initial version

EXAMPLES:

```
<Lots and lots of examples>
```

TO DO:

- more doctests
- add missing functions: intersection, ..
- see if we can remove some obsolete functions
- improve point_close_to_boundary
class mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine (T)
Bases: SageObject
Return the affinoid domain corresponding to the affinoid tree T.
Objects of this class represent (generic) affinoid domains on the Berkovich line.

INPUT:

- T - an affinoid tree

OUTPUT:
The affinoid corresponding to T.
EXAMPLES:

```
sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(2)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)
```

TO DO:
-
affinoid_subtree (xiO, is_in=None)
Return the affinoid subtree with given root.
This function is used inductively to construct a tree representing the affinoid U, if such a tree is not explicitly given, and the affinoid is defined in some other way (as a rational domain, or as a union of other affinoid domains,...).

INPUT:

- xi0-a point of type II
- is_in - a boolean, or None (default None)

OUTPUT: an affinoid tree with root $\xi 0$ which represents the intersection of U with $D_{\xi_{0}}$, the set of points $\geq \xi_{0}$ (a closed discoid with boundary point ξ_{0}, or the full Berkovich line if $x i_{0}$ is the Gauss point).
If is_in is given, we assume it is equal to the truth value of " ξ_{0} lies in this affinoid". This is useful to avoid an extra test for membership.
affinoid_subtree_in_hole (eta)
Return the affinoid subtree with given root.
This is a helper function for affinoid_subtree.
INPUT:

- eta - a point of type V

OUTPUT:
We assume that η represents a downward hole of this affinoid U. This means that the boundary point of η lies in U but η does not. We return an affinoid tree T whose root is the boundary point of η, representing the affinoid

$$
\left(X \backslash D_{\eta}\right) \cup\left(D_{\eta} \cap U\right)^{〔}
$$

berkovich_line()

Return the Berkovich line underlying this affinoid.

boundary ()

Return the Shilov boundary of the affinoid.
The Shilov boundary is a finite set of type-II-points contained in the affinoid with the property that the valuative function of every rational function which is regular on the affinoid takes a minimum on this set.

The Shilov boundary is simply the union of the boundaries of the connected components.

components()

Return the list of connected components of this affinoid.

```
connected_component_tree (xi0)
```

Return the tree of the connected component of this affinoid with given root.
INPUT:

- xi0 - a point type II or V

OUTPUT:
If ξ_{0} is a point of type II, then we return an affinoid tree underlying the connected component of this affinoid U with minimal point ξ_{0}.

It is assumed but not checked that ξ_{0} lies in this affinoid.
If ξ_{0} is of type V then we return the branch of this tree in the direction of ξ_{0}. This has the effect of "filling in all holes" which do not lie in the open discoid $D_{\xi_{0}}$. It does not correspond to the intersection with $D_{\xi_{0}}$.
Note:
This is the generic algorithm for the parent class AffinoidDomainOnBerkovichLine. It is assumed that the underlying affinoid tree has already been computed. Otherwise we run into an infinite loop.

intersection (V)

Return the affinoid which is the intersection of self with V.
Not yet implemented.

intersection_with_unit_disk()

Return the intersection of this affinoid with the unit disk.

is_empty()

Return wether this affinoid is the empty set.

is_full_berkovich_line()

Return whether this affinoid is equal to the full Berkovich line.
is_in (xi)
Return whether xi lies on the affinoid.
INPUT:

- xi - a point of type I, II or V

OUTPUT:
True if xi lies on the affinoid, False otherwise.
minimal_points ($x i 0=$ None)
Return the minimal points of this affinoid greater than a given point.
INPUT:

- xi0 - a point of type II, or None (default None)

OUTPUT:
The list of all minimal points of this affinoid which are $\geq \xi_{0}$.
number_of_components ()
Return the number of connected components of ths affinoid.
point_close_to_boundary (xi0)
Return a type-I-point inside the affinoid, close to xio.

INPUT:

- xi0-a boundary point of the affinoid self

OUTPUT:

A type-I-point xil on the affinoid $U:=$ self which is "close" to the boundary point xi0.
The latter means that xil maps onto the irreducible components of the canonical reduction of U corresponding to xi0.
EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: U = rational_domain(X, 2/x/(x+1))
sage: U
Elementary affinoid defined by
v(1/x) >= - 1
v(1/(x + 1)) >= -1
<BLANKLINE>
sage: xi0 = U.boundary() [0]
sage: U.point_close_to__boundary(xi0)
Point of type I on Berkovich line given by x + 2 = 0
```

At the moment, our choice of point close to the boundary is not optimal, as the following example shows:

```
sage: U = rational_domain(X, 2/(x^2+x+1))
sage: U
Elementary affinoid defined by
v(1/( (x^2 + x + 1)) >= -1
sage: xi0 = U.boundary() [0]
sage: U.point_close_to_boundary(xi0)
Point of type I on Berkovich line given by x^2 + 3*x + 1 = 0
```

The point at infinity is also inside U and 'close to the boundary', and has smaller degree than the point produced above.
The following raised an error in an earlier version

```
sage: f = (-2/25* x^6 - 4*x^5 - 1351/225*x^4 - 52/225* (*^3 - 173/225* *^2 - 2/
99*x + 2/3)/(x^2 + 2/3*x)
sage: h = valuative_function(X, f)
sage: U = h.affinoid_domain()
sage: U
Affinoid with 2 components:
Elementary affinoid defined by
v(x) >= 0
v(1/x) >= -1/2
Elementary affinoid defined by
v((2* (x^2 + 1)/ (x^2) >= 2
<BLANKLINE>
sage: U.point_close_to__boundary(U.boundary()[1])
Point of type I on Berkovich line given by x^2 + 2 = 0
```


Todo:

- Use a better strategie to find a point of minimal degree.

simplify()

Simplify this affinoid.
This only changes the internal representation by an "affinoid tree". Very likely, this is unnecessary because the simplification has already occured when the affinoid was first constructed.

tree ()

Return the Berkovich tree representing this affinoid.

```
union(V)
```

Return the affinoid which is the union of self with V.
Need new implementation.
class mclf.berkovich.affinoid_domain. AffinoidTree (X, root=None, children=None, parent=None, is_in=False)
Bases: mclf.berkovich.berkovich_trees.BerkovichTree
A marked Berkovich tree representing an affinoid subdomain.
An AffinoidTree is a Berkovich tree T in which every vertex has an additional flag "is_in" with value True or False. It represents an affinoid subdomain U in the way explained above.

INPUT:

- X - a Berkovich line
- root - a point on X or None $($ default $=$ None $)$
- children - a list of affinoid trees or None (default $=$ None)
- parent - an affinoid tree or none $($ default $=$ None $)$
- is_in - a boolean or None $($ default $=$ None $)$

OUTPUT:

An affinoid tree on X. It is either empty (if only X is given) or it has root, parent, children and the flag is_in as given by the extra parameters.

EXAMPLES:

```
sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(2)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)
```

compute_connected_components (comp_list, new_comp)
Compute the connected components of the represented affinoid.

INPUT:

- comp_list - a list (of lists of lists)
- new_comp - a list (of lists)

OUTPUT:

- all connected components whose root is a vertex of $\mathrm{T}=$ "'self" are added to the list comp_list.
- all boundary_lists which belong to T and to the connected component which contains the root of T are added to new_comp (in particular, if the root of T does not lie in the affinoid then the list is unchanged).

Here a boundary list is a list of type-V-points which represent holes of the affinoid with a common boundary point. A connected component is a list of boundary lists.

EXAMPLES:

```
sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(2)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)
```

connected_components ($x i 0=$ None)
Return a list of affinoid trees representing the connected components below a given point.
INPUT:

- xi0 - a point of type II or V

OUTPUT:
A list of affinoid trees representing the connected components of the affinoid corresponding to this tree, which are \geq to the given point ξ_{0}. If it is not given, then we ignore this condition.

Note that ξ_{0} may be of type V .

```
copy (parent=None)
```

Return a copy of self, force parent as parent.
WARNING! something is wrong with this function!!
holes (upward_hole=True)
Return the holes of this affinoid tree.
OUTPUT:
A list of triples $\left(T_{1}, T_{2}, \eta\right)$, where T_{1}, T_{2} are subtrees of self and η is a point of type V , satisfying the following conditions:

- T_{2} is a child of T_{1}, or vice versa
- the root of T_{1} is a boundary point of the affinoid underlying self
- the root of T_{2} does not lie in the affinoid
- η is the direction from the root of T_{1} to the root of T_{2}

This implies that η is a hole of the affinoid represented by self.

intersection_with_unit_disk()

Return the tree representing the intersection with the unit disk.
is_in(xi)
Return True if xi lies in the affinoid U represented by self.
INPUT:

- xi - a point on the Berekovich space underlying this affinoid tree

Note that ξ may also be a point of type V.
To test this, we compute the image of xi under the retraction map onto the total space of $\mathrm{T}=$ self and check whether it lies on a vertex in U or on an edge connecting two vertices in U.
minimal_points ($x i 0=$ None)
Return the minimal points of the affinoid corresponding to this tree.
INPUT:

- xi0 - a point of type II or V, or None (default None)

OUTPUT: the list of all minimal points of the affinoid corresponding to this tree, which are $\geq \xi_{0}$. If ξ_{0} is not given, this condition is ignored.
Note that ξ_{0} may be of type V.
root_is_in()
Return whether the root of self lies in the affinoid.
show ()
Display a graphical representation of self.
simplify()
Simplify this tree without changing the represented affinoid.
class mclf.berkovich.affinoid_domain.ClosedUnitDisk (X)
Bases: mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
Return the closed unit disk.
The closed unit disk is the affinoid on the Berkovich line with function field $F=K(x)$ defined by the inequality

$$
v(x)>=0
$$

INPUT:

- X - a Berkovich line

OUTPUT:
The closed unit disk inside X .
EXAMPLES:

```
sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(3)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)
sage: ClosedUnitDisk(X)
Elementary affinoid defined by
v(x) >= 0
<BLANKLINE>
```

class mclf.berkovich.affinoid_domain.ElementaryAffinoidOnBerkovichLine (T)

Bases: mclf.berkovich.affinoid_domain. AffinoidDomainOnBerkovichLine
Return the elementary affinoid corresponding to a boundary list.
An "elementary affinoid" is a connected affinoid subdomain of a Berkovich line X which is the complement of a finite set of disjoint residue classes in X. It can be represented by a "boundary list" as follows.

A "boundary list" is a list of lists, whose entries at the lowest level are type-V-points on X. Each sublist contains the type-V-points with a common boundary point. The elementary affinoid corresponding to a "boundary list" is the complement of the residue classes corresponding to the type-V-points contained in the sublists. The set of boundary points of the type-V-points is exactly the Shilov boundary of the affinoid.
INPUT:

- boundary_list - a list of lists containing type-V-points.

OUTPUT:
The elementare affinoid corresponding to comp_list.
TO DO:

- we need a function which produces an (algebraic) type-I-point inside the affinoid.
inequalities()
Return the inequalities defining the elementary affinoid, as a string.

is_empty()

Return whether this affinoid is the empty set.
is_full_berkovich_line()
Return whether this affinoid is the full Beerkovich line.
class mclf.berkovich.affinoid_domain.UnionOfDomains (affinoid_list)
Bases: mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
Return the union of a list of affinoid domains.

INPUT:

- affinoid_list - a nonempty list of affinoid domains

OUTPUT:
The union of the affinoid domains in affinoid_list

```
connected_component_tree (xi0)
```

Return the tree of the connected component of this affinoid with given root.
INPUT:

- xi0 - a point type II or V

OUTPUT:
If ξ_{0} is a point of type II, then we return an affinoid tree underlying the connected component of this affinoid U with minimal point ξ_{0}.

It is assumed but not checked that ξ_{0} is a minimal point of a connected component of U.
If ξ_{0} is of type V then we return the branch of this tree in the direction of ξ_{0}. This has the effect of 'filling in all holes' which do not lie in the open discoid $D_{\xi_{0}}$. It does not correspond to the intersection with $D_{\xi_{0}}$.

```
is_in(xi)
```

Return whether xi lies in this affinoid.
INPUT:

- xi - a point on the Berkovich line (type V points are allowed)

OUTPUT: True if ξ lies on this affinoid.
minimal_points ($x i 0=$ None)
Return the minimal points of this affinoid greater than a given point.
INPUT:

- xi0 - a point of type II, or None (default None)

OUTPUT:
The list of all minimal points of this affinoid which are $\geq \xi_{0}$.
mclf.berkovich.affinoid_domain.all_polynomials (F, x, d)
List all polynomials in x over F of degree d .
INPUT:

- F: a finite field F
- x : generator of a polynomial ring over F

OUTPUT:
an iterator which list all elements of $\mathrm{F}[\mathrm{x}]$ of degree d .
mclf.berkovich.affinoid_domain.rational_domain (X, f)
Return the rational domain defined by the function f.
INPUT:

- X - a Berkovich line
- f - a nonconstant rational function on X

OUTPUT:

The rational domain

$$
U:=\left\{\xi \in X \mid v_{\xi}(f) \geq 0\right\} .
$$

EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: rational_domain(X, (x^2+2)/x* (x+1)/2)
Affinoid with 2 components:
Elementary affinoid defined by
v(x^2 + 2) >= 3/2
Elementary affinoid defined by
v(x + 1) >= 1
<BLANKLINE>
```

f may be nonconstant:

```
sage: rational_domain(X, F(1/2))
The empty set
sage: rational_domain(X, F(1))
the full berkovich line
```

mclf.berkovich.affinoid_domain.simplify_tree_at_vertex (T, T1)
Simplify the affinoid tree at a given vertex.
This is now obsolete.
INPUT:

- T - an affinoid tree
- T1 - a subtree of T

OUTPUT: the affinoid tree T is simplified, starting at the subtree T_{1}.
We check whether the root of T_{1} (which is a vertex of T) may be contracted, or whether T_{1} has a unique child which may be omitted. In the first case, we try to iterate this, if possible.

This may not simplify T as much as possible. However, if T has been obtained from a simplified
mclf.berkovich.affinoid_domain.union_of_affinoid_trees($T 1, T 2$)
Return the tree representing the union of the affinoids with given trees.
This is now obsolete.
INPUT:

- T1, T2 - affinoid trees

OUTPUT: the tree representing the union of the affinoids represented by T_{1} and T_{2}.

2.5 Piecewise affine functions on the Berkovich projective line

Let K be a field, v_{K} a discrete valuation on K and $X=\mathbb{P}_{K}^{1}$ the Berkovich line over K.
A continuous function

$$
h: X \rightarrow \mathbb{R} \cup\{ \pm \infty\}
$$

is called piecewise affine if it factors over the retraction map

$$
r_{T}: X \rightarrow T
$$

onto a Berkovich subtree $T \subset X$, and the restriction of h to the edges of T are affine (with respect to the natural affine structure of a path on a Berkovich line).

The most important examples of piecewise linear functions are valuative functions. For instance, to any nonzero rational function $f \in F=K(x)$ we associate the function

$$
h_{f}: X \rightarrow \mathbb{R} \cup\{ \pm \infty\}, \xi \mapsto v_{\xi}(f) .
$$

A general valuative function on X is simply a rational multiple of a function of the form h_{f}. Any such function h can be written uniquely in the form

$$
h=a_{0}+\sum_{i} a_{i} \cdot h_{f_{i}}
$$

where the f_{i} are irreducible polynomials in the parameter x, and the a_{i} are rational numbers, with $a_{i} \neq 0$ for $i>0$.
Let h be a nonconstant piecewise affine function on X. Then the subset

$$
U:=\{\xi \in X \mid h(\xi) \geq 0\}
$$

is an affinoid subdomain (unless it is empty, or the full Berkovich line X). If $h=h_{f}$ is the valuative function associated to a rational function f, then U is actually a rational domain.

AUTHORS:

- Stefan Wewers (2017-2019)

EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
```

We can define a valuative function by a rational function on X :

```
sage: f = (x^2+2*x-2)/(2*x-1)
sage: h = valuative_function(X, f)
```

We check that the value of h is the valuation of f, at several points:

```
sage: xi = X.gauss_point()
sage: h(xi), xi.v(f)
(0, 0)
sage: xi = X.infty()
sage: h(xi), xi.v(f)
(-Infinity, -Infinity)
sage: xi = X.point_from_discoid(x, 3)
sage: h(xi), xi.v(f)
(1, 1)
```

We can also define a valuative function by a pair $\left(L, a_{0}\right)$:

```
sage: L = [(x - 1, 2/3), (x + 1, 3/2)]
sage: a_0 = -3
sage: h = valuative_function(X, (L, a_0))
sage: xi = X.point_from_discoid(x + 1, 2)
sage: h(xi)
2/3
```

We can compute the affinoid domain given by the inequality $h(\xi) \geq 0$:

```
sage: h.affinoid_domain()
Affinoid with 2 components:
Elementary affinoid defined by
v(x - 1) >= 9/4
Elementary affinoid defined by
v(x + 1) >= 14/9
```

class mclf.berkovich.piecewise_affine_functions.AffineFunction (gamma, a, b)
Bases: SageOb ject

An affine function on a closed annuloid or a closed discoid.

INPUT:

- xi1, xi2 - points on the Berkovich line X such that $\xi_{1}<=\xi_{2}$
- a, b - rational numbers

OUTPUT:

the affine function h on the domain D of the path $\gamma=\left[\xi_{1}, \xi_{2}\right]$ defined by a and b. If $t: D \rightarrow \mathbb{R}$ is the standard parametrization, then

$$
h(\xi):=a \cdot t(\xi)+b
$$

berkovich_line()

Return the Berkovich line underlying this affine function.

domain()

Return the domain of definition of this affine function.

find_point_with_value (c)

Return a point where this affine function takes a given value.
OUTPUT:
a point ξ on the interior of the underlying path such that the function is nonconstant in ξ and takes the value c.

If no such point exists, None is returned.
Note: do I really want only the points in the interior?

initial_point()

Return the initial point of the path underlying this affine function.
initial_value()
Return the initial value of this affine function.

is_constant()

Return whether this affine function is constant.
is_in_domain (xi)
Return whether a point is in the domain of definition of this affine function.
is_increasing()
Return whether this affine function is strictly increasing.
path ()
Return the path underlying this affine function.

terminal_point ()

Return the terminal point of the path underlying this affine function.

terminal_value ()

Return the terminal value of this affine function.
class mclf.berkovich.piecewise_affine_functions.DirectedPath (xil, xi2)
Bases: SageObject
A directed path on the Berkovic path.
INPUT:

- xi1, xi2-two points on the Berkovich line such that $\xi 1 \leq \xi_{2}$

OUTPUT:

the directed path $\gamma=\left[\xi_{1}, \xi_{2}\right]$.
EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
```

We can define a path by specifying the initial and the terminal point:

```
sage: xil = X.point_from_discoid(x, 1)
sage: xi2 = X.point_from_discoid(x^2 + 4, 5)
sage: gamma = DirectedPath(xi1, xi2)
sage: gamma
path from Point of type II on Berkovich line, corresponding to v(x) >= 1 to Point,
๑Of type II on Berkovich line, corresponding to v(x^2 + 4) >= 5
```

We use the standard parametrization for a path; it depends on the discoid representation of the terminal point:

```
sage: gamma.point(3)
Point of type II on Berkovich line, corresponding to v(x + 2) >= 3/2
```

Given a path $\gamma=\left[\xi_{1}, \xi_{2}\right]$, we define its tube D as follows. If ξ_{2} is of type II, then D is the open annuloid with boundary point points ξ_{1} and ξ_{2}. If ξ_{1} is of type I, then $D:=D_{\xi_{1}}$ is the discoid with boundary point ξ_{1}.:

```
sage: gamma.tube()
domain defined by
v(x + 2) > 1
v(1/( (x^2 + 4)) > -5
sage: gamma.is_in_tube(X.gauss_point())
False
sage: gamma.is_in_tube(xi2)
False
```

berkovich_line()
Return the Berkovich line on which this path lives.

initial_parameter()

Return the initial parameter of this path.
OUTPUT:
a rational number s_{0} such that $\gamma\left(s_{0}\right)$ is the initial point of this path γ.

initial_point()

Return the initial point of this path.

initial_slope()

Return the slope of this path at the initial point.
is_limit_path()
Return whether the terminal point of this path is a limit point.
point (t)
Return the point on the path with given parameter.
INPUT:

- t - a rational number, or Infinity

OUTPUT:
the point $\xi=\gamma(t)$ on this path, with respect to the standard parametrization.

terminal_parameter ()

Return the terminal parameter of this path.
OUTPUT:
a rational number s_{1} (or $\left.\infty\right)^{\text {‘ }}$ such that $\gamma\left(s_{1}\right)$ is the terminal point of this path γ.
terminal_point ()
Return the terminal point of this path.

tube ()

Return the tube around this path.
Let ξ_{1} be the initial and ξ_{2} be the terminal point of this path. Then the tube is either the open annuloid with boundary points ξ_{1} and $\xi 2$ (if ξ_{2} is of type II) or the closed discoid with boundary point $x i_{1}$ (if ξ_{2} is of type I).

```
class mclf.berkovich.piecewise_affine_functions.Discoid(xi0, xil=None)
```

Bases: mclf.berkovich.piecewise_affine_functions.Domain
Return a closed discoid of the Berkovich line.
INPUT:

- xi0-a point on the Berkovich line X
- xil (default: None) - another point on X

OUTPUT:
the closed discoid D consisting of all point on the Berkovich line which are greater or equal to ξ_{0}. If ξ_{1} is given, then it is checked whether $\xi 1$ lies in D.

If ξ_{0} is the Gauss point, then D is taken to be the closed discoid with minimal point ξ_{0}, containing ξ_{1}. If ξ_{1} is not given, then D is taken to be the closed unit disk.

EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: Discoid(X.gauss_point())
the closed discoid defined by v(x) >= 0
```

minimal_point()

Return the minimal point of this closed discoid.
class mclf.berkovich.piecewise_affine_functions.Domain $(X, \quad$ inequalities, strict_inequalities)
Bases: SageObject
A domain in the Berkovich line, defined by inequalities.
Objects of this class are used as domains of definition of affine and piecewise affine functions. Although they may be affinoid domains, this class has no relation to the class AffinoidDomainOnBerkovichLine.
INPUT:

- x - a Berkovich line
- inequalities - a list of pairs (f, a)
- strict_inequalities - a list of pairs (g, b)

OUTPUT: the domain of X which is the intersection of the domains defined by the inequalities

$$
v(f) \leq a, \quad v(g)<b .
$$

Here f, g are assumed to be nonconstant rational functions on X, and a, b rational numbers.
If the inequalities and strict_inequalities are both empty then the full Berkovich line is returned.

berkovich_line()

Return the Berkovich line underlying this domain.
contains_infty ()
Return whether this domain contains the point at infinity.
inequalities()
Return the list of non-strict inequalities which are part of the definition of this domain.
is_full_berkovich_line()
Return whether this domain is the full Berkovich line.
minimal_point()
Return the minimal point of this domain.
Since an arbitrary domain has no minimal point, this method raises an error, unless this domain is the full Berkovich line.

```
strict_inequalities()
```

Return the list of strict inequalities which are part of the definition of this domain.

```
class mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction(D,
```

Bases: SageObject
A piecewise affine function on a domain in the Berkovich line.
INPUT:

- $\mathrm{D}-\mathrm{a}$ domain in the Berkovich line
- a0-a rational number
- restrictions - a list of pairs $\left(h_{1}, h_{2}\right)$

OUTPUT:

a piecewise affine function h on D.
We assume that D is either a closed discoid, or the full Berkovich line X. Let ξ_{0} be the initial point of the function, which is either the boundary point of D or, if $D=X$, the Gauss point on X.
The restrictions are the restrictions of h to proper open subdiscoids D_{1} of D. It is assumed that h is constant, with value a_{0}, on the complement of these subdiscoids. The restriction of h to D_{1} is given by a pair (h_{1}, h_{2}), where h_{2} is the restriction of h to a proper closed subdiscoid $D_{2} \subset D_{1}$ and h_{1} is the restriction of h to the open annuloid $D_{1} \backslash D_{2}$. It is assumed that h_{1} is an affine functions, whereas h_{2} is piecewise affine.

We allow D_{2} to be empty, in which case h_{2} is None and the domain of h_{1} is an open discoid.
EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
```

We can define the "valuative function" of a rational function:

```
sage: f = (x^2 - 2) / x
sage: h = valuative_function(X, f)
sage: h
piecewise affine function on the Berkovich line, with initial value 0
```

A piecewise affine function can be evaluated at any point.

```
sage: xi = X.point_from_discoid(x, 2)
sage: h(xi)
-1
sage: xi.v(f)
-1
```

A piecewise affine function defines an affininoid subdomain (the point where the function takes nonnegative values).
sage: h.affinoid_domain() Elementary affinoid defined by $\mathrm{v}(\mathrm{x})\rangle=0 \mathrm{v}(1 / \mathrm{x})\rangle=-1<$ BLANKLINE $>$

affinoid_domain()

Return the affinoid domain defined by this function.
OUTPUT:
the affinoid subdomain of the domain of this function h, defind by the inequality

$$
h(x i) \geq 0 .
$$

EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: h1 = valuative_function(X, 2*x)
sage: h1.affinoid_domain()
Elementary affinoid defined by
v(x) >= -1
sage: h2 = valuative_function(X, x* (x-1)/2)
sage: h2.affinoid_domain()
```

```
Affinoid with 2 components:
Elementary affinoid defined by
v(x + 1) >= 1
Elementary affinoid defined by
v(x) >= 1
```


berkovich_line()

Return the Berkovich line on which this function is defined.

domain()

Return the domain of this function.
find_next_points_with_value (a, xi0=None)
Return the next points where this function takes a given value, after a given point.
INPUT:

- a - a rational number
- xi0 (default: None) - a point in the domain of this function

OUTPUT: The list of all points on the nerf of this function

- at which this function takes the value a,
- which are strictly greater than ξ_{0}, and
- which are minimal with this property.

If xiO is None then the second condition is ignored.
NOTE:

```
Note that the function may be constant on a path of the nerf. If
this constant value is equal to a, and xiO lies on this path, then
there is no minimal point on this path with the required conditions.
Therefore, the search is continued on all strictly greater paths.
```


EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: h = valuative_function(X, (x^2 + x + 2)/x)
sage: h.find_next_points_with_value(0)
[Point of type II on Berkovich line, corresponding to v(x) >= 0]
```

If the second parameter ξ_{0} is given, the output consists of points strictly less than ξ_{0}. As the function h is constant on the path from the Gauss point to the point $v(x) \geq 1$, no point on this path is minimal with the required properties.

```
sage: h.find_next_points_with_value(0, X.gauss_point())
[]
sage: h.find_next_points_with_value(1)
[Point of type II on Berkovich line, corresponding to v(x + 2) >= 2,
Point of type II on Berkovich line, corresponding to v(x + 1) >= 1]
sage: points = h.find_next_points_with_value(-1)
sage: points
[Point of type II on Berkovich line, corresponding to v(x) >= 2,
Point of type II on Berkovich line, corresponding to v(1/x) >= 1]
```

(continued from previous page)
sage: h.find_next_points_with_value(-1, points[0])
[]
For the moment, the value $a=\infty$ does not lead to a correct result.

```
sage: h.find_next_points_with_value(Infinity)
[]
```

find_next_zeroes (xi0=None)
Return the next zeroes of this function after a given point.
INPUT:

- xi0 (default: None) - a point in the domain of this function

OUTPUT: The list of all points in the domain of this function which

- are zeroes of this function,
- are not in the constant locus of the function
- are greater or equal to ξ_{0}, and
- are minimal with this property.

If $x i 0$ is None then the third condition is ignored.

initial_point()

Return the initial point of this function.
This is the minimal point of the domain of this function.

```
initial_value()
```

Return the value of this function at the initial point.
is_constant ()
Return whether this function is constant.

is_in_domain (xi)

Return whether a given point is in the domain of this function.
restrictions()
Return the restrictions of this piecewise affine functions.

OUTPUT:

a list of pairs $\left(h_{1}, h_{2}\right)$, where h_{1} is an affine function which is the restriction of this function h to an open subannuloid of the domain of h, and h_{2} is the restriction of h to the closed discoid which the unique hole of the domain of h_{1}.

If the domain of h_{1} is an open discoid (so there is no hole), then h_{2} is None.
Together with the initial value, these restrictions define h, because h is constant on the complement of the domains of definitios of these restrictions.
mclf.berkovich.piecewise_affine_functions.open_annuloid (xi0, xil)
Return an open annuloid.

INPUT:

- xi0, xi1 - points of type II on the Berkovich line X

OUTPUT:

the open annuloid A with boundary points $x i_{0}$ and ξ_{1}. Note that $\xi 0$ and ξ_{1} are not contained in D.

It is assumed that $\xi_{0}<\xi_{1}$. This means that A cannot contain the Gauss point.
EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: xi0 = X.point_from_discoid(x-1, 1)
sage: xil = X.point_from_discoid(x+1, 2)
sage: open_annuloid(xi0, xil)
domain defined by
v(x + 1) > 1
v(1/(x + 1)) > -2
```

mclf.berkovich.piecewise_affine_functions.open_discoid (xi0, xil)

Return an open discoid.

INPUT:

- xi0, xi1 - points on the Berkovich line X

OUTPUT:

the open discoid D with boundary point $x i_{0}$ which contains ξ_{1}. Note that $\xi 0$ is not contained in D.
It is assumed that $\xi_{0}<\xi_{1}$. This means that D cannot contain the Gauss point.

EXAMPLES:

```
sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: xi0 = X.point_from_discoid(x-1, 1)
sage: xil = X.point_from_discoid(x+1, 2)
sage: open_discoid(xi0, xil)
domain defined by
v(x + 1) > 1
```

mclf.berkovich.piecewise_affine_functions.valuative_function ($D, \quad f, \quad T=N o n e$, is_factored=False)
A valuative function on a domain in the Berkovich line.

INPUT:

- D - a domain in the Berkovich line, or the Berkovich line itself
- $\mathbf{f} \mathbf{- a}$ nonconstant rational function on X, or a pair $\left(L, a_{0}\right)$, where L is a list of pairs (g, a) consisting of
- a polynomial g (element of the function field on X)
- a nonzero rational number a
and where a_{0} is a rational number
- T (default: None) - a Berkovich tree
- is_factored - a boolean (default: False)

OUTPUT:

If f is a rational function, then we create the valuative function h on D defined as

$$
h(\xi):=v_{K}(f(\xi))
$$

If f is a pair $\left(L, a_{0}\right)$ as above, where L is a list of pairs $\left(f_{i}, a_{i}\right)$, then the corresponding valuative function is defined as

$$
h(\xi):=a_{0}+\sum_{i} a_{i} v(f(\xi)) .
$$

The domain D must be either a standard closed discoid, or the full Berkovich line.
If the Berkovich tree T is given, then it is assumed that T is the dendrite of the function h on D. This means that the root of T is the minimal point of D, and that the restriction of h to the edges of T are affine.

If is_factored is True then we assume that L is actually a list of triples $(f, a,[\xi])$, where the f are irreducible polynomials, and $[\xi]$ is the list of all points of type I which are zeroes of f.

Chapter 3

3.1 Fake p-adic completions

p-adic fields as completions of absolute number fields

This module realizes a class FakepAdicCompletion which represents a p-adic number field K. Internally, the p-adic number field is represented by a number field K_{0} together with a discrete valuation v_{K} on K_{0} which extends the p-adic valuation v_{p} on \mathbb{Q}, such that K is the completion of K_{0} at v_{K}.

Our main goal is to be able to compute weak p-adic Galois extensions of p-adic number fields of large degree. We want to:

- compute efficiently with general extensions of \mathbb{Q}_{p} of high ramification index (up to several hundreds)
- obtain provably correct results.

Both objectives seem difficult to reach with the existing functionality of Sage. Therefore, we decided to represent a p-adic number field K by a pair $\left(K_{0}, v_{K}\right)$, where K_{0} is an absolute number field and v_{K} is a discrete valuation on K_{0} extending the ' p '-adic valuation v_{p} on \mathbb{Q}, for some prime p. A more systematic realization of this idea, Julian Rueth's Sage package completion, should soon be part of Sage.

The first advantage of our approach (which adresses the first point above) is that arithmetic in absolute number fields is reasonably fast in Sage. Moreover, since there are many pairs (K_{0}, v_{K}) which have the same completion, we can choose K_{0} in such a way that certain operations we use heavily (like evaluation of v_{K}) can be done very efficiently. At the moment, we choose $\left(K_{0}, v_{K}\right)$ such that

- v_{K} is the unique extension of v_{p} to K_{0},
- K_{0} / \mathbb{Q} is generated by a uniformizer π_{K} of v_{K}.

For instance, these assumptions allow us to easily write down a p-integral basis for K_{0} / \mathbb{Q} which is also an integral basis for K / \mathbb{Q}_{p}. We can also choose K_{0} such that the defining polynomial has small coefficients.

The second advantage is that, since for most of our needs we do not really need the p-adic number field K explicitly, we can instead work with the henselization K^{h} of $\left(K_{0}, v_{K}\right)$ which is an exact field: an element of K^{h} is uniquely determined by a finite amount of data, namely its minimal polynomial over \mathbb{Q} and a sufficiently precise approximation
by an element of K_{0}. Moreover, K^{h} only depends on the p-adic number field K but not on our particular choice of K_{0}.
The main drawback of our approach is that morphisms between two p-adic number fields K and L are somewhat difficult to realize: the problem is that for our particular choice of the underlying number fields K_{0} and L_{0}, there may not exist a nonzero morphism $K_{0} \rightarrow L_{0}$ even if K is a subfield of L.

AUTHORS:

- Stefan Wewers (2017-08-24): initial version

EXAMPLES:

TO DO:

- one should try to always find a totally ramified extension (but it is not so clear how to do that)

```
class mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion(K0,
```


Bases: SageObject

Return the completion of a number field at a p-adic valuation.
INPUT:

- K0 - an absolute number field,
- vK - a p-adic valuation on K0.

We assume that v_{K} is the unique extension of the p-adic extension v_{p} on \mathbb{Q} to K_{0}, and that the standard generator π_{K} of K_{0} / \mathbb{Q} is a uniformizer for v_{K}. If this is not the case, an error is raised.

absolute_degree ()

Return the degree of this p -adic field as an extension of \mathbb{Q}_{p}.

absolute_inertia_degree()

Return the absolute inertia degree of this p -adic extension.

absolute_ramification_degree()

Return the absolute ramification degree of this p-adic extension.
approximate_factorization (f, only_ramified_factors=False)
Return a list of approximate irreducible factors of f.
INPUT:

- f - a squarefree univariate polynomial over K_{0}, the number field underlying this p-adic field K
- only_ramified_factors - boolean (default: False)

OUTPUT: a list of pairs (g, e), where g is an approximate irreducible factor of f over K and $e>=1$. The pairs (g, e) are in bijection with the irreducible factors of f over K. If (g, e) corresponds to the irreducible factor f_{i}^{\prime} then and f_{i} generate the same extension of K. In particular, f_{i} and g have the same degree. Moreover e is the ramification degree of the extension of K generated by g (or f_{i}).
If only_ramified_factors is True then all pairs (g, e) with $e=1$ are omitted.
At the moment we have to assume that f is monic and integral with respect to v_{K} (and hence all roots have nonnegative valuation).
approximate_irreducible_factor (f)
Return one approximate irreducible factor of a given polynomial.
INPUT:

- f - a squarefree and integral polynomial over the number field $\mathrm{K} _0$ underlying this p-adic number field K.

Output:
Either a monic poynomial g over K_{0} which is an approximate irreducible factor of f, or a positive integer e.
The polynomial g is then irreducible over K and the extension of K generated by adjoining a root of g is contained in the splitting field of f.
If an integer e is retuned, then any tame extension of K of ramification degree e is a weak splitting field of f over K.
TODO:
One should also allow a list of polynomials as input.
base_change_matrix (integral_basis='standard', precision=20)
Return the base change matrix to an integral basis.

INPUT:

- integral_basis - a string (default: "standard")
- precision - a positive integer

OUTPUT:

An invertible (n, n)-matrix S over \mathbb{Q} with the following property: for an element a of K_{0}, the vector $S * a . v e c t o r()$ gives the representation of a as a linear combination of integral_basis.
TODO:

- clarify the role of precision in this function

base_valuation()

Return the p-adic valuation.
characteristic_polynomial (f, g)
Return the characteristic polynomial of an element of a simple extension of K.

INPUT:

- f, g - univariate monic polynomials over K

OUTPUT:

the characteristic polynomial of the element $\beta=g(\alpha)$ with respect to the relative extension $L=K[\alpha] / K$, where α is a formal root of f. Of course, L is a field only if f i irreducible, but this is not checked, and no error would occur within this function if f is reducible.
characteristic_polynomial_mod (f, N)
Return the absolute characteristic polynomial of the root of a given polynomial, modulo p^{N}.
INPUT:

- f - a monic p-integral and irreducible polynomial over the underlying number field K
- N - a positive integer

OUTPUT:
the absolute characteristic polynomial of a root of f, modulo p^{N}.

```
degree ()
```

Return the degree of this p -adic field as an extension of \mathbb{Q}_{p}.
element_from_vector (v, integral_basis='standard')
Return the element corresponding to a given vector.
INPUT:

- $\mathrm{v}-\mathrm{a}$ vector of rational numbers with length equal to the degree of K
- integral_basis - a string (default: "standard")

OUTPUT:

the linear combination of the canonical integral basis of K corresponding to v.

extension (f, embedding=False)

Return a p-adic extension such that f has a root in an unramified extension of it.
INPUT:

- $\mathrm{f}-\mathrm{a}$ monic univariate polynomial over the number field K_{0} underlying this p-adic extension K, which is irreducible over K.
- embedding - a boolean (default: False)

OUTPUT:

A p-adic extension L of K such that f has a root in an unramified extension of L, or (if embedding is True) the pair (L, ϕ), where ϕ is the canonical embedding of K into L.

If K_{0} is the underlying number field, then $f \in K_{0}[x]$ is irreducible over the completion K; the resulting finite extension L / K is a subextension of the extension of K

$$
K[x] /(f)
$$

However, the number field L_{0} underlying L is in general not equal to $K_{0}[x] /(f)$, and there may not exist any embedding of K_{0} into L_{0}.

```
generator()
```

Return the standard generator of this p-adic extension.

```
inertia_degree()
```

Return the absolute inertia degree of this p -adic extension.

```
integral_basis_of_unramified_subfield(precision=5)
```

Return an (approximate) integral basis of the maximal unramified subfield.

INPUT:

- precison - a positive integer

OUTPUT:
A list $\alpha=\left(\alpha_{0}, \ldots, \alpha_{m-1}\right)$ of elements of K_{0} which approximate (with precision p^{N} an integral basis of the maximal unramified subfield.
is_Qp()
Return True if this is the padic-completion of the field of rational numbers.
is_approximate_irreducible_factor ($g, f, v=$ None $)$
Check whether g is an approximate irreducible factor of f.
INPUT:

- g: univariate polynomial over the underlying number field K_{0}
- f: univariate polynomial over K_{0}
- v: a MacLane valuation on $K_{0}[x]$ approximating g, or None; here approximating means that LimitValuation ($v, ~ g$) is well-defined.

Output: True if g is an approximate irreducible factor of f , i.e. if g is irreducible over K and Krasner's condition is satified, If true, the stem field of g over K is a subfield of the splitting field of f over K.
Her we say that Krasner's Condition holds if for some root α of g there exists a root β of f such that α is p-adically closer to β than to any other root of g.

Note that if $\operatorname{deg}(g)=1$ then the condition is nontrivial, even though the conclusion from Krasner's Lemma is trivial.
matrix (a, integral_basis='standard')
Return the matrix representing the element a.
INPUT:

- a - an element of the underlying number field of this p -adic extension
- integral_basis - a string (default: "standard")

OUTPUT:

The matrix representing the element a of the underlying number field K, with respect to the canonical p-integral basis.

```
minpoly_over_unramified_subextension(N)
```

Return the minimal polynomial of the standard uniformizer of this p-adic number field K, relative to the maximal unramified subfield, as a polynomial over K itself.

INPUT:

- N - a positive integer

OUTPUT:
A polynomial P over the number field K_{0} underlying $K . P$ is an approximation (with precision N) of the minimal polynomial of the standard uniformizer π of K, relative to the maximal unramified subfield $K_{n r}$ of K. Moreover, $P(\pi)=0$ holds exactly.

If the approximation is sufficient (note: this still has to be made precise) then P has a root π_{1} in K which is also a uniformizer of K, and $K=K_{n r}\left[\pi_{1}\right]$.

NOTE:
To check that P is ok, it should suffice to see that P is "Eisenstein over $K_{n} r$ " and has a root in K. Unfortunately, the coefficient will likely not lie in $K_{n r}$ exactly, and so this criterion probably makes no sense.
normalized_valuation()
Return the normalized valuation on this p -adic field.
Here normalized means that the valuation takes the value 1 on a uniformizer.

```
number_field()
```

Return the number field representing this p -adic extension.
p()
Return the prime p.
polynomial()
Return the minimal polynomial of the standard generator of K.
ramification_degree()
Return the absolute ramification degree of this p-adic extension.
ramified_extension (n, embedding=False)
Return a purely ramified extension with given ramification degree.

INPUT:

- n - a positive integer
- embedding - a boolean (default: False)

OUTPUT:

A finite extension L of this p-adic field K such that L / K is purely ramified, of degree n . If embedding is True then the pair (L, ϕ) is returned, where $\phi: K \rightarrow L$ is the canonical embedding.
reduce (a, N)
Return an approximation of a which is reduced modulo p^{N}.
INPUT:

- a - an element of the underlying number field K
- N - a positive Integer

OUTPUT: an element \tilde{a} of K which is congruent to a modulo p^{N}, and whose representation in terms of the canonical integral basis of K has coefficents of the form c / p^{m}, with $0 \leq c<p^{N}$ and $m \geq 0$.
reduce_rational_number (a, N)
Return an approximation of a which is reduced modulo p^{N}.
INPUT:

- a - a rational number
- N - a positive Integer

OUTPUT: an element \tilde{a} of \mathbb{Q} which is congruent to a modulo p^{N}, of the form c / p^{m}, with $0 \leq c<p^{N}$ and $m \geq 0$.
simplify_irreducible_polynomial (f)
Return a simpler polynomial generating the same extension.

INPUT:

- $\mathrm{f}-\mathrm{an}$ univariate polynomial over the underlying number field K which is integral and irreducible over \hat{K}

OUTPUT:

A polynomial g over K which is irreducible over \hat{K}, and which generates the same extension of \hat{K} as f.
subfield (alpha, e)
Return a subfield approximated by a given element.
INPUT:

- alpha - an element of the number field K_{0} underlying K
- e-a divisor of the absolute degree of K_{0}

OUTPUT:

A p-adic number field L with ramification index e which has an embedding into K, or None if no such field can be found.

If L is a subfield of K with ramification index e and α_{i} is a sequence of element of K_{0} converging to a generator of L, then calling K. subfield (alpha_i, e) will find the subfield L for i sufficiently large.
TODO:

One easy improvement could be to not try to embed Linto K after every MacLane step, but only for the last step before the degree of v jumps.

uniformizer()

Return the standard unifomizer of this p -adic extension.
valuation()
Return the valuation on the underlying number field of this p-adic extension.
vector (a, integral_basis='standard')
Return the vector corresponding to an element of the underlying number field.

INPUT:

- a - an element of the number field K_{0} underlying this p-adic number field
- integral_basis - a string (default: "standard")

OUTPUT:
the vector of coefficients corresponding to the representation of a as a linear combination of an integral basis of K.

If integral_basis is "standard" then we use the integral basis

$$
\left.p^{\lceil } i / e\right\rceil \pi^{i}, i=0, \ldots, n,
$$

where π is the standard uniformizer of L, e is the absolute ramification degree and n the absolute degree of K.
If it is mixed then we use the integral basis

$$
\pi^{i} \alpha_{j}, i=0, \ldots, e-1, j=0, \ldots, n / e-1
$$

where α_{j} is an approximation of an integral basis of the maximal unramified subfield.

```
weak_splitting_field(F)
```

Return the weak splitting field of a list of polynomials.
INPUT:

- F - a polynomial over the underlying number field K_{0}, or a list of polynomials

OUTPUT:
A weak splitting field L / K of F .
This means that F splits over an unramified extension of L.
Note:
This function works at the moment only for the base field \mathbb{Q}_{p}.
TODO:
The following trick should give a massive improvement for large examples: Instead of calling K.approximate_factorization(F) one should calling a new version of K. approximate_irreducible_factor(F, *options*).
The function approximate_irreducible_factor (. .) would do a MacLane approximation with require_maximal_degree=True. From the resulting v's one can then select (according to the options) one which, after enough MacLane steps, gives an approximate irreducible factor.

The point is that the test for being an approximate factor seems to be the most time consuming for large examples. A further speedup could be obtained by

- either finding a more clever way to test,
- or by simply doing several MacLane steps before testing.

The options should be set such that factors are chosen accoring to the following rules:

1. one prefers purely ramified factors over factors with inertia
2. one prefers purely wild factors over mixed factors
3. one prefers mixed factors over tame factors

Note that for tame factors the inertia may be ignored, hence they may be considered as purely ramified. However, it is better to leave them until the end, because doing a tame extension is almost trivial. It is not clear to me whether a purely wild factor with inertia is better than a mixed unramified factor.

EXAMPLES:

The following example created an error in a previous version

```
sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: Q2 = FakepAdicCompletion(QQ, v_2)
sage: R.<x> = QQ[]
sage:f = x^^12 + 192* (*^9 - 5352*x^6 + 33344*x^3 - 293568
sage: L = Q2.weak_splitting_field(f)
sage: L.ramification_degree()
4
```

Check that non-integral polynomials are allowed as well

```
sage: Q2.weak_splitting_field(2*x^2 + 1)
```

2-adic completion of Number Field in pi2 with defining polynomial $x^{\wedge} 2+2$

3.2 Fake p-adic embeddings

Let K and L be p-adic number fields. In this module we define a class FakepAdicEmbedding whose objects represent embeddings $\phi: K \rightarrow L$ over \mathbb{Q}_{p}.

Here the p-adic number fields K and L are objects of the class FakepAdicCompletion. This means that K and L represented as pairs $\left(K_{0}, v_{K}\right)$ and $\left(L_{0}, v_{L}\right)$, where e.g. K_{0} is a number field and v_{K} a p-adic valuation on K_{0} such that K is the completion of K_{0} at v_{K}. In fact, we do not work with actual p-adic numbers.
Given an embedding $\phi: K \rightarrow L$, there need not exist any embedding $K_{0} \rightarrow L_{0}$ of the underlying number fields. Therefore, the embedding ϕ has to be construced in a rather indirect way. Recall that K_{0} and L_{0} are absolute number fields generated by prime elements π_{K} and π_{L} over \mathbb{Q} (with respect to v_{K} and v_{L}). So an embedding $\phi: K \rightarrow L$ is uniquely determined by a root of the absolute minimal polynomial P_{K} of π_{K} over \mathbb{Q} in L. Such a root may be represented by a limit pseudo valuation v on the polynomial ring $L_{0}[x]$ with $v\left(P_{K}\right)=\infty$.

AUTHORS:

- Stefan Wewers (2017-08-30): initial version

EXAMPLES:

TO DO:
class mclf.padic_extensions.fake_padic_embeddings.FakepAdicEmbedding(K, L, ap-
prox-
ima-
tion=None)
Bases: SageObject
Return an embedding of two p-adic number fields.
INPUT:

- K, L - two p-adic number fields, given as objects of FakepAdicCompletion
- approximation - an approximation of the desired emdding, or None (default: None)

OUTPUT: an embedding of K into L which is approximated by approximation, or None if no such embedding exists.

WARNING: to return None doesn't make sense, because __init__ returns an instance of FakepAdicEmbedding.

Internally, the embedding ϕ is represented by a limit pseudo valuation v on $L_{0}[x]$ such that $v\left(P_{K}\right)=\infty$. Here K_{0} and L_{0} are the algebraic number fields underlying K and L and P_{K} is the minimal valuation of the canonical generator of K_{0} over \mathbb{Q}.
An approximation of ϕ is any discrete valuation v_{0} on $L_{0}[x]$ which approximates v. This may actually be v itself.

Note that the resulting embedding may not be unique, in which case an arbitrary embedding is chosen.

eval (alpha, precision=2)

Evaluate this embedding on an element of this domain, or on a polynomial.
INPUT:

- alpha - an element of the domain of this embedding, or a polynomial over the underlying number field of the domain
- precision - a positive integer, or None (default: None)

OUTPUT:
the image of alpha under this embedding $\phi: K \rightarrow L$, with the guaranteed precision precision.
The element α of K may be given as an element of the number field K_{0} underlying K. In this case the image $\phi(\alpha)$ will be given as an element of the number field L_{0} underlying L, which is an approximation of the true value of $\phi(\alpha)$ modulo p^{N}, where N is the guaranteed precision. If precision is given then N is larger or equal to precision. Otherwise the internal precision of ϕ is used (which only guarantees that ϕ is uniquely determined).

The element α in K may also be given by a...

improve_approximation ($N=$ None)

Improve the underlying approximation of this embedding.

INPUT:

- N - a positive integer, or None (default: None)

The effect of this method is that the underlying approximation of the limit valuation representing this embedding is improved. If N is given then this improvement will guarantee that for any integral element α of the number field K_{0} underlying the domain K of this embedding, the value of self.eval (alpha) will agree with the true value $\phi(\alpha)$ modulo p^{N}.

3.3 Fake p-adic extensions

Let K be a p-adic number field. For our project we need to be able to compute with Galois extensions L / K of large degree.

At the moment, computations with general extensions of p-adic fields of large degree are still problematic. In particular, it seems difficult to obtain results which are provably correct. For this reason we do not work which p-adic numbers at all. Instead, we use our own class FakepAdicCompletion, in which a p-adic number field is approximated by a pair $\left(K_{0}, v_{K}\right)$, where K_{0} is a suitable number field and v_{K} is a p-adic valuation on K_{0} such that K is the completion of K_{0} at v_{K}.
In this module we define a class FakepAdicExtension, which realizes a finite extension L / K of p-adic number fields. Both fields K and L are realized as objects in the class FakepAdicCompletion, the embedding $K \rightarrow L$ as an object of FakepAdicEmbedding.

AUTHORS:

- Stefan Wewers (2017-08-30): initial version

EXAMPLES:

TO DO:

- the method polynomial should give an exact result, namely a object of some class FakepAdicPolynomial
class mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension (phi) Bases: Sage0bject

Return the extension of p-adic number fields corresponding to an embedding.

INPUT:

- phi - an embedding of p-adic number fields

OUTPUT: the extension L / K where K is the domain and L the target of $p h i$
base_field()
Return the base field.
degree ()
Return the degree of the extension.

```
extension_field()
```

Return the extension field.

```
inertia_degree()
```

Return the inertia degree of the extension.

normalized_valuation()

Return the normalized valuation.
p()
Return the prime p.
polynomial()
Return the minimal polynomial of a generator of this extension.
OUTPUT:
A monic, integral and irreducible polynomial P over the number field underlying the base field of this extension.

Let L / K be our extension of p-adic number fields. Then P is a monic polynomial over the number field K_{0} underlying K, of degree $[L: K]$, with the following properties:

- P is integral and irreducible over K
- P is the minimal polynomial of a prime element π of L such that $L=K[\pi]$.

Note, however, that π is in general not equal to the canonical absolute generator π_{L} of L / \mathbb{Q}_{p}. Moreover, in general no root of P is contained in the number field L_{0} underlying L.

TODO:
P should be naturally equipped with
ramification_degree()
Return the ramification degree of the extension.
subextension (alpha, d)
Return a subextension of given degree, containing (approximately) a given element.
INPUT:

- alpha - an (approximate) element of this extension field
- d - a positive integer

OUTPUT:

a subextension of degree d which (approximately) contains alpha, or None if no such subextension exists.
Let L / K be the given extension of p-adic number fields. Then we are looking for a subextension $K \subset$ $M \subset L$ such that $[M: K]=d$. If α is given exactly, then we demand that $\alpha \in M$. If α is given by an approximation $\left(\alpha_{0}, N\right)$ then we demand that there exists an element $\alpha_{1} \in M$ such that

$$
v_{M}\left(\alpha_{1}-\alpha_{0}\right) \geq N^{\iota}
$$

Here the valuation v_{M} is normalized such that $v_{M}(p)=1$.

valuation()

Return the valuation of the extension.

3.4 Weak p-adic Galois extensions

Let K be a p-adic number field. For our project we need to be able to compute with Galois extensions L / K of large ramification degree. For instance, we need to be able to compute the breaks of the ramification filtration of the Galois group of L / K, as well as the corresponding subfields.
At the moment, computations with large Galois extensions of p-adic fields are still problematic. In particular, it seems difficult to obtain results which are provably correct. For this reason we do not work which p-adic numbers at all. Instead, we use our own class FakepAdicCompletion, in which a p-adic number field is approximated by a pair $\left(K_{0}, v_{K}\right)$, where K_{0} is a suitable number field and v_{K} is a p-adic valuation on K_{0} such that K is the completion of K_{0} at v_{K}.

Let L / K be a finite field extension. We say that L / K is a weak Galois extension if the induced extension $L^{n r} / K^{n r}$ is Galois. Given a polynomial f in $K[x]$, we say that L / K is a weak splitting field for f if f splits over $L^{n r}$.
Given a weak Galois extension L / K, we have canonical isomorphisms between the following groups:

- the Galois group of $L^{n r} / K^{n r}$,
- the inertia subgroup of the Galois closure of L / K,

MCLF Documentation

Moreover, this isomorphism respects the filtrations by higher ramification groups.
If L / K is totally ramified then the degree of L / K is equal to the degree of $L^{n r} / K^{n r}$, which is equal to the order of the inertia subgroup of the Galois closure of L / K. Therefore, our approach allows us to fully understand the inertia group of a Galois extension of p-adic fields, while keeping the degree of the field extensions with which one works as small as possible.

Our method can also be used to work with approximations of the subfields of a p-adic Galois extension corresponding to the higher ramification subgroups.

For $u \geq 0$ we let $L^{s h, u}$ denote the subfield of $L^{s h} / K^{s h}$ corresponding to the u th filtration step of the Galois group of $L^{s h} / K^{s h}$. Then the completion of $L^{s h, u}$ agrees with the maximal unramified extension of the subextension \hat{L}^{u} of the Galois closure \hat{L} / \hat{K} corresponding to the u th ramification step. Moreover, there exists a finite extensions L^{u} / K, together with an extension $v_{L^{u}}$ of v_{K} to L^{u} such that

- the strict henselization of $\left(L^{u}, v_{L^{u}}\right)$ is isomorphic to $L^{s h, u}$,
- the completion of $\left(L^{u}, v_{L^{u}}\right)$ agrees with \hat{L}^{u}, up to a finite unramified extension.

Note that L^{u} will in general not be a subfield of L (and not even of the Galois closure of L / K).
In this module we define a class WeakPadicGaloisExtension, which realizes an approximation of a p-adic Galois extension, up to unramified extensions.

AUTHORS:

- Stefan Wewers (2017-08-06): initial version

EXAMPLES:

This example is from the "Database of Local Fields":

```
sage: from mclf import *
sage: v_3 = QQ.valuation(3)
sage: Q_3 = FakepAdicCompletion(QQ, v_3)
sage: R.<x> = QQ[]
sage: f = x^6+6* (^^4+6* *^ 3+18
sage: L = WeakPadicGaloisExtension(Q_3, f)
sage: L.upper_jumps()
[0, 1/2]
```

TO DO:
class mclf.padic_extensions.weak_padic_galois_extensions.WeakPadicGaloisExtension(K,

Bases: mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension
Return the weak p-adic splitting field of a polynomial.

INPUT:

- K - a p-adic number field
- F - a polynomial over the number field underlying K, or a list of such polynomials
- minimal_ramification - a positive integer (default: 1)

OUTPUT: the extension L / K, where L is a weak splitting field of F whose ramification index over K is a multiple of minimal_ramification.

NOTE:

For the time being, F has to be defined oover \mathbb{Q}, and minimal ramification has to be prime to p.
factors_of_ramification_polynomial (precision=10)
Return the factorization of the ramification polynomial into factors with fixed slope.
OUTPUT: a dictionary factors such that $g=$ factors [s] is the maximal factor of the ramification polynomial G whose Newton polygon has a single slope s. We omit the factor with slope $s=-1$.
lower_jumps()
Return the upper jumps of the ramification filtration of this extension.
ramification_filtration (upper_numbering=False)
Return the list of ramification jumps.
INPUT:

- upper_numbering - a boolean (default: False)

OUTPUT: an ordered list of pairs $\left(u, m_{u}\right)$, where u is a jump in the filtration of higher ramification groups and m_{u} is the order of the corresponding subgroup. The ordering is by increasing jumps.

If upper_numbering is False, then the filtration is defined as follows. Let L / K be a Galois extension of p-adic number fields, with Galois group G. Let π be a prime element of L, and let v_{L} denote the normalized valuation on L (such that $v_{L}(\pi)=1$). For $u \geq 0$, the ramification subgroup G_{u} consists of all element σ of the inertia subgroup I of G such that

$$
v_{L}(\sigma(\pi)-\pi) \geq i+1
$$

In particular, $I=G_{0}$. An integer $u \geq 0$ is called a "jump" if G_{u+1} is strictly contained in G_{u}. Note that this is equivalent to the condition that there exists an element $\sigma \in G$ such that

$$
v_{L}(\sigma(\pi)-\pi)=u+1
$$

It follows that the ramification filtration can easily be read off from the Newton polygon (with respect to v_{L}) of the polynomial

$$
G:=P(x+\pi) / x,
$$

where P is a minimal polynomial of π over K. The polynomial G is called the ramification polynomial of the Galois extension L / K.
ramification_polygon()
Return the ramification polygon of this extension.
The ramification polygon of a weak Galois extension L / K of p-adic number fields is the Newton polygon of the ramification polynomial, i.e. the polynomial

$$
G:=P(x+\pi) / x
$$

where π is a prime element of L which generates the extension L / K and P is the minimal polynomial of π over $K^{n r}$, the maximal unramified subextension of .

The (strictly negative) slopes of the ramification polygon (with respect to the valuation v_{L} on L, normalized such that $v_{L}\left(\pi_{L}\right)=1$) correspond to the jumps in the filtration of higher ramification groups, and the abscissae of the vertices of the corresponding vertices are equal to the order of the ramification subgroups that occur in the filtration.

NOTE:

- For the time being, we have to assume that $K=\mathbb{Q}_{p}$. In this case we can choose for π the canonical generator of the absolute number field L_{0} underlying L.
ramification_polynomial (precision=20)
Return the ramification polynomial of this weak Galois extension.
The ramification polynomial is the polynomial

$$
G:=P(x+\pi) / x
$$

where π is a prime element of L which generates the extension L / K and P is the minimal polynomial of π over $K^{n r}$, the maximal unramified subextension of .

NOTE:

- For the time being, we have to assume that $K=\mathbb{Q}_{p}$. In this case we can choose for π the canonical generator of the absolute number field L_{0} underlying L.
ramification_subfield (u)
Return the ramification subfield corresponding to a given lower jump.
Here a nonnegative integer $u \geq 0$ is called a lower jump for the weak p-adic Galois extension L / K if u is a jump in the filtration $\left(G_{u}\right)_{u \geq 0}$ of the Galois group $G=G a l\left(L^{n r} / K^{n r}\right)$ of the induced extension $L^{n r} / K^{n r}$. This is equivalent to the following condition: there exists an element $g \in G$, such that

$$
v_{L}\left(g\left(\pi_{L}\right)-\pi_{L}\right)=u+1
$$

Here v_{L} is the valuation of the extension field L and π_{L} is a prime element of L. We normalize v_{L} such that $v_{L}\left(\pi_{L}\right)=1$.
ramification_subfields (precision=1)
Return the ramification subfields of this weak Galois extension.
The set of all subfields is returned as dictionary, in which the keys are the lower jumps and the values are the corresponding subfields, given as extension of the base field.

```
upper_jumps()
```

Return the lower jumps of the ramification filtration of this extension.

CHAPTER 4

Semistable reduction of curves

4.1 Semistable reduction of a smooth projective curve over a local field

Let K be a field and v_{K} a discrete valuation on K. We let \mathcal{O}_{K} denote the valuation ring of v_{K} and \mathbb{F}_{K} the residue field.

We consider a smooth projective curve Y over K. Our goal is to compute the semistable reduction of Y at v_{K} and to extract nontrivial arithmetic information on Y from this.

Let us define what we mean by 'semistable reduction' and by 'computing'. By the famous result of Deligne and Mumford there exists a finite, separable field extension L / K, an extension v_{L} of v_{K} to L (whose valuation ring we call \mathcal{O}_{L}) and an \mathcal{O}_{L}-model \mathcal{Y} of Y_{L} whose special fiber $\bar{Y}:=\mathcal{Y}_{s}$ is reduced and has at most ordinary double points as singularities. We call \mathcal{Y} a semistabel model and \bar{Y} a semistable reduction of Y.

Let us assume, for simplicity, that K is complete with respect to v_{K}. Then the extension v_{L} to L is unique and L is complete with respect to v_{L}. Then we we may moreover assume that L / K is a Galois extension and that the tautological action of the Galois group of L / K extends to the semistable model \mathcal{Y}. By restriction we obtain an action of $\operatorname{Gal}(L / K)$ on \bar{Y}. (In practise we mostly work with fields K which are not complete. To make sense of the above definitions, one simply has to replace K by its completion.)
When we say the semistable reduction of Y we actually mean the extension L / K, the \mathbb{F}_{L}-curve \bar{Y} and the action of the former on the latter.

Note that neither L / K nor \bar{Y} are unique, but their nonuniqueness is in a sense inessential. For instance, one may replace L by a larger Galois extension L^{\prime} / K; as a consequence the curve \bar{Y} gets replaced by its base extension to the residue field of L^{\prime}. Also, certain blowups of the semistable model \mathcal{Y} may result in a new semistable model \mathcal{Y} with special fiber \bar{Y}^{\prime}. The only difference between \bar{Y} and \bar{Y}^{\prime} are some new irreducible components, which are 'contractible', i.e. they are smooth of genus 0 and meet the rest of \bar{Y}^{\prime} in at most two points.

At the moment, we do not have an effective method at our disposal to compute the semistable reduction of an arbitrary curve Y, but only a set of methods which can be applied for certain classes of curves. We always assume that the curve Y is given as a finite separable cover

$$
\phi: Y \rightarrow X
$$

MCLF Documentation

where $X=\mathbb{P}_{K}^{1}$ is the projective line over K. There are two main cases that we can handle:

- the order of the monodromy group of ϕ (i.e. the Galois group of its Galois closure) is prime to the residue characteristic of the valuation v_{K}.
- ϕ is a Kummer cover of degree p, where p is the (positive) residue characteristic of v_{K}

In the first case, the method of admissible reduction is available. In the second case, the results of [We17] tell us what to do. In both cases, there exists a normal \mathcal{O}_{K}-model \mathcal{X}_{0} of $X=\mathbb{P}_{K}^{1}$ (the inertial model) whose normalization in the function field of Y_{L} is a semistable model, for a sufficiently large finite extension L / K. Once the right inertial model is defined, the method for computing the semistable model \mathcal{Y} and its special fiber \bar{Y} are independent of the particular case (these computations are done within the Sage class ReductionTree).

In this module we define a base class SemistableModel. An object in this class is initialized by a pair $\left(Y, v_{K}\right)$, where Y is a smooth projective curve over a field K and v_{K} is a discrete valuation on K. The class provides access to functions which compute and extract information from the semistable reduction of Y with respect to v_{K}.

Note: For the time being, we have to assume that K is a number field. Then v_{K} is the valuation associated to a prime ideal of K (i.e. a maximal ideal of its ring of integers).

AUTHORS:

- Stefan Wewers (2018-5-16): initial version

EXAMPLES:

We compute the stable reduction and the conductor exponent of the Picard curve

$$
Y: y^{3}=x^{4}-1
$$

at the primes $p=2,3$:

```
sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^4-1, 3)
sage: Y
superelliptic curve y^3 = x^4 - 1 over Rational Field
sage: Y2 = SemistableModel(Y, v_2)
sage: Y2.is_semistable()
True
```

The stable reduction of Y at $p=2$ has four components, one of genus 0 and three of genus 1 .

```
sage: [Z.genus() for Z in Y2.components()]
[0, 1, 1, 1]
sage: Y2.components_of_positive_genus()
[the smooth projective curve with Function field in u2 defined by u2^3 + x^4 + x^2,
the smooth projective curve with Function field in u2 defined by u2^3 + x^2 + x,
the smooth projective curve with Function field in u2 defined by u2^ 3 + x^2 + x + 1]
sage: Y2.conductor_exponent()
6
sage: v_3 = QQ.valuation(3)
sage: Y3 = SemistableModel(Y, v_3)
sage: Y3.is_semistable()
True
sage: Y3.components_of_positive_genus()
[the smooth projective curve with Function field in u2 defined by u2^3 + u2 + 2*x^4]
```

```
sage: Y3.conductor_exponent()
```

```
class mclf.semistable_reduction.semistable_models.SemistableModel(Y, vK,
```

Bases: SageObject
This is a base class for various classes of curves and methods for computing the semistable reduction. Objects of this class are determined by a smooth projective curve Y over a field K and a discrete valuation v_{K} on K.
INPUT:

- Y - a smooth projective curve
- vK - a discrete valuation on the base field K of Y
- check - a boolean (default: True)

Instantiation of this class actually creates an instant of a suitable subclass, which represents the kind of curve for which an algorithm for computing the semistable reduction has been implemented. At the moment, there are two such subclasses:

- If the degree of Y as a cover of the projective line is prime to the residue characteristic of v_{K} then we invoke the subclass AdmissibleModel. Note that this may not work: we can only guarantee that Y has admissible reduction if the order of the Galois group of the cover $Y \rightarrow X=\mathbb{P}_{K}^{1}$ is prime to the residue characteristic.
- If Y is a superelliptic curve of degree p, where p is the residue characteristic of v_{K} and K has characteristic 0 then the subclass SuperpModel is invoked.
- if none of the above holds, then we either raise a NotImplementedError (if check=True) or we create an AdmissibleModel (if check=False)

EXAMPLES:

```
sage: from mclf import *
sage: v_5 = QQ.valuation(5)
sage: FX.<x> = FunctionField(QQ)
sage: R.<y> = FX[]
sage: FY.<y> = FX.extension(y^3 - Y^2 + x^4 + x + 1)
sage: Y = SmoothProjectiveCurve(FY)
sage: YY = SemistableModel(Y, v_5)
sage: YY
semistable model of the smooth projective curve with Function field in y defineds
\hookrightarrowby y^3 - y^2 + x^ 4 4 + x + 1, with respect to 5-adic valuation
```

The degree of Y as a cover of the projective line is 4 , which is strictly less than $p=5$. Hence Y has admissible reduction and we have created an instance of the class AdmissibleModel:

```
sage: isinstance(YY, AdmissibleModel)
True
```

Actually, Y has good reduction at $p=5$:

```
sage: YY.is_semistable()
True
sage: YY.components_of_positive_genus()
[the smooth projective curve with Function field in ul defined by u1^3 + 4*u1^2 +
\hookrightarrow^^4 + x + 1]
```


base_valuation()

Return the valuation on the constant base field of the curve.

```
components()
```

Return the list of all components of the admissible reduction of the curve.

```
components_of_positive_genus()
```

Return the list of all components of of the admissible reduction of the curve which have positive genus.

```
compute_semistable_reduction (verbosity=1)
```

Compute the semistable reduction of this curve (and report on the ongoing computation).

INPUT:

- verbosity - a nonnegative integer (default: 1)

OUTPUT:

Calling this function initiates the creation of a ReductionTree which essentially encodes a semistable model of the curve. Depending on the verbosity level, messages will be printed which report on the ongoing computation. If verbosity is set to 0 , no message will be printed.

This method must be implemented by the subclasses of SemistableModel (which are characterized by a particular method for computing a semistable model). At the moment, these subclasses are -AdmissibleModel-Superell-Superp

conductor_exponent()

Return the conductor exponent at p of this curve.

EXAMPLES

In this example the conductor exponent was computed wrongly in a previous version:

```
sage: from mclf import *
sage: R.<x> = QQ[]
sage: f = x^4 4 2* *^ 3 + 2* *^^ 2 +x
sage: Y = SuperellipticCurve(f, 3)
sage: Y3 = SemistableModel(Y, QQ.valuation(3))
sage: Y3.conductor_exponent()
11
```


constant_base_field()

Return the constant base field of this curve.

curve ()

Return the curve.

```
is_semistable()
```

Check whether the model is really (potentially) semistable.

```
reduction_tree()
```

Return the reduction tree underlying this semistable model.

```
semistable_reduction()
```

Return the special fiber of this semistable model.
Note: not yet implemented

```
stable_reduction()
```

Return the special fiber of the stable model of this curve.
The stable model is obtained from this semistable model by contracting all 'unstable' components.
Note: not yet implemented

4.2 Admissible reduction of curves

Let K be a field equipped with a discrete valuation v_{K}. For the time being, we assume that K is a number field. Then v_{K} is the \mathfrak{p}-adic valuation corresponding to a prime ideal \mathfrak{p} of K.
We consider a smooth projective curve Y over K. Our goal is to compute the semistable reduction of Y at v_{K} and to extract nontrivial arithmetic information on Y from this.

In this module we realize a class AdmissibleModel which computes the semistable reduction of a given curve Y at v_{K} provided that it has admissible reduction at v_{K}. This is always the case if the residue characteristic of v_{K} is zero or strictly larger than the degree of Y (as a cover of the projective line).

AUTHORS:

- Stefan Wewers (2018-7-03): initial version

EXAMPLES:

```
<Lots and lots of examples>
```

TO DO:

- more doctests

```
class mclf.semistable_reduction.admissible_reduction.AdmissibleModel ( }Y,vK
```

 Bases: mclf.semistable_reduction.semistable_models. SemistableModel
 A class representing a curve Y over a field K with a discrete valuation v_{K}. Assuming that Y has (potentially) admissible reduction at v_{K}, we are able to compute the semistable reduction of Y at v_{K}.
INPUT:

- Y - a smooth projective curve over a field K
- vK - a discrete valuation on K

OUTPUT: the object representing the curve Y and the valuation v_{K}. This object has various functionalities to compute the semistable reduction of Y relative to v_{K}, and some arithmetic invariants associated to it (for instance the "exponent of conductor" of Y with respect to v_{K}).
EXAMPLES:
original_model_of_curve()
Return the original model of the curves.

4.3 Semistable models of superelliptic curves of degree p

Let K be a field of characteritic zero and v_{K} a discrete valuation on K whose residue field is finite of characteristic $p>0$.

Let $f \in K[x]$ be a polynomial over K which is not a p-th power and whose radical has degree at least three. We consider the smooth projective curve Y over K defined generically by the equation

$$
Y: y^{p}=f(x)
$$

So Y is a superelliptic curve of degree p.
In this module we define a class SuperpModel which represents a semistable model of a superelliptic curve Y of degree p, with respect to a p-adic valuation on the base field K of Y.

The method to define and compute a semistable model in this particular case is taken from

MCLF Documentation

- [We17] S. Wewers, Semistable reduction of superelliptic curves of degree p, preprint, 2017.

The key notion is the etale locus.
The superelliptic curve Y is, by definition, a cyclic cover

$$
\phi: Y \rightarrow X
$$

of degree p of the projective line X over the base field K. We consider X and Y as analytic spaces over the completion of K at the base valuation v_{K}. Let

$$
\bar{\phi}: \bar{Y} \rightarrow \bar{X}
$$

denote the semistable reduction of the cover $Y \rightarrow X$. The etale locus is an affinoid subdomain $X^{e t}$ of X consisting of those points which specialize to a point on \bar{X} above which the map $\bar{\phi}$ is etale.

While the affinoid $X^{e t}$ is determined by the semistable reduction of the cover ϕ, conversely $X^{e t}$ contains a lot of information on the semistable reduction. The main result of [We17] gives an explicit description of the affinoid $X^{e t}$ as a union of rational domains defined by rational functions which can be easily computed in terms of the polynomial f defining Y.
Once the etale locus $X^{e t}$ is computed, we can define an inertial model \mathcal{X}_{0} of X. A semistable model \mathcal{Y} of Y can then be obtained as the normalization of \mathcal{X}_{0} inside Y_{L}, for a sufficiently large finite extension L / K.

The class SuperpModel is a subclass of the class SemistableModel and can be instantiated via its parent. All methods to extract information about the semistable reduction of Y are simply inherited from SemistableModel. The subclass itself only defines the methods to compute the etale locus and to create the corresponding inertail model.

AUTHORS:

- Stefan Wewers (2017-07-29): initial version

EXAMPLES:

```
sage: from mclf import *
sage: R.<x> = QQ[]
sage: f = x^4 + x^2 + 1
sage: Y = SuperellipticCurve(f, 3)
sage: Y
superelliptic curve y }\mp@subsup{\textrm{y}}{}{\wedge}=\mp@subsup{\textrm{x}}{}{\wedge}4+\mp@subsup{x}{}{\wedge}2+1 over Rational Field
sage: v_3 = QQ.valuation(3)
sage: YY = SuperpModel(Y, V_3)
sage: YY
semistable model of superelliptic curve Y: y^3 = x^4 + x^2 + 1 over Rational Field,r
with respect to 3-adic valuation
sage: YY.etale_locus()
Affinoid with 3 components:
Elementary affinoid defined by
v(x) >= 3/4
Elementary affinoid defined by
v(x-2) >= 5/4
Elementary affinoid defined by
v(x+2) >= 5/4
sage: YY.is_semistable()
True
sage: YY.components()
[the smooth projective curve with Function field in ul defined by ul^ }3+2*\mp@subsup{x}{}{\wedge}4 + 2*x
42 + 2,
the smooth projective curve with Function field in u2 defined by u2^ 3 + u2 + 2*x^2,
```

(continued from previous page)

```
the smooth projective curve with Function field in u2 defined by u2^ 3 + u2 + 2*x^2,
the smooth projective curve with Function field in u2 defined by u2^3 + u2 + 2*x^2]
sage: YY.conductor_exponent()
12
```

We check that issues \#39 and \#40 have been fixed:

```
sage: v_2 = QQ.valuation(2)
sage: f = x^5 - 5* (x^4 + 3*x^3 - 3*x^2 + 4*x - 1
sage: Y = SuperellipticCurve(f, 2)
sage: Y2 = SemistableModel(Y, v_2)
sage: Y2.etale_locus()
Affinoid with 2 components:
Elementary affinoid defined by
v(x + 1) >= 2/3
Elementary affinoid defined by
v(x^4 + 4*x + 4) >= 8/3
sage: Y2.is_semistable()
True
```

TO DO:

- more doctests
class mclf.semistable_reduction.superp_models.SuperpModel ($Y, v K$)
Bases: mclf.semistable_reduction.semistable_models.SemistableModel
Return a semistable model of a superelliptic curve of degree p.
INPUT:
- Y - a superelliptic curve over a field K
- vK - a discrete valuation on K

The field K must be of characteristic 0 and the residue characteristic of vK must be a prime p which is equal to the covering degree of Y.

OUTPUT: the object representing a semistable model of Y.

Note: For the time being, we need to make the following additional assumptions on the curve Y :

- the polynomial f which is part of the defining equation $y^{p}=f(x)$ is of degree prime to p.

This restrictions is preliminary and will be removed in a future version. Note that a superelliptic curve of degree p can be written in the required form if and only if the map $Y \rightarrow X$ has a K-rational branch point.

EXAMPLES:

compute_semistable_reduction()
Compute the semistable reduction of this curve, and report on the computation and the result.
etale_locus()
Return the etale locus of the cover $Y \rightarrow X$.
OUTPUT: the etal locus, an affinoid subdomain of the Berkovich line X (the analytic space associated to the projektive line over the completion of the base field K with respect to the valuation v_{K}).

EXAMPLES:

```
sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: f = x^3 + x^2 + 1
sage: Y = SuperellipticCurve(f, 2)
sage: Y
superelliptic curve y^2 = x^3 + x^2 + 1 over Rational Field
sage: YY = SuperpModel(Y, v_2)
sage: YY.etale_locus()
Elementary affinoid defined by
v (x^4 + 4*x + 4) >= 8/3
```

We check Example 4.14 from [BouWe16]. The original equation is $y^{2}=f(x)=2 x^{3}+x^{2}+32$, and f is not monic, as required. To fix this, we substitute $x / 2$ and multiply with 4 . Then the new equation is $y^{2}=x^{3}+x^{2}+128$:

```
sage: f = x^3 + x^2 + 128
sage: Y = SuperellipticCurve(f, 2)
sage: YY = SuperpModel(Y, v_2)
sage: YY.etale_locus()
Elementary affinoid defined by
v(x) >= 2
v(1/x) >= - 5/2
<BLANKLINE>
```

Note: At the moment, the construction of the superelliptic curve Y requires that the polynomial f defining Y is monic, integral with respect to v_{K} and of degree prime to p. The motivation for this restriction, and its result is that the etale locus is contained in the closed unit disk.

reduction_tree ()

Return the reduction tree which determines the semistabel model.
mclf.semistable_reduction.superp_models.p_approximation (f, p)
Return the p-approximation of f.
INPUT:

- f-a polynomial of degree n over a field K, with nonvanishing constant coefficient
- p - a prime number

OUTPUT:

Two polynomials h and g in $K[x]$, such that

- $f=a_{0}\left(h^{p}+g\right)$, where a_{0} is the constant coefficient of f
- $r:=\operatorname{deg}(h) \leq n / p$, and
- $x^{(r+1)}$ divides g

Note that h, g are uniquely determined by these conditions.
mclf.semistable_reduction.superp_models.p_approximation_generic (f, p)
Return the generic p-approximation of f.
INPUT:

- f - a polynomial of degree n over a field K, with nonvanishing constant coefficient
- p - a prime number

OUTPUT:

Two polynomials H and G in $K(x)[t]$ which are the p-approximation of the polynomial $F:=f(x+t)$, considered as polynomial in t.

4.4 Reduction trees: a data structure for semistable reduction of covers of the projective line

Let K be a field with a discrete valuation v_{K}. We let $X:=\mathbb{P}_{K}^{1}$ denote the projective line over K. We are also given a finite cover

$$
\phi: Y \rightarrow X,
$$

where Y is a smooth projective and absolutely irreducible curve. We assume that Y has positive genus.
Let \mathcal{X}_{0} be a (normal) v_{K}-model of X. Then for every finite field extension L / K and every extension v_{L} of v_{K} to L, we obtain v_{L}-models \mathcal{X} of X_{L} and \mathcal{Y} of Y_{L} and a finite map $\mathcal{Y} \rightarrow \mathcal{X}$ extending ϕ by normalizing \mathcal{X}_{0}. Restricting this map to the special fiber yields a finite map

$$
\bar{\phi}: \bar{Y} \rightarrow \bar{X}
$$

between projective curves over the residue field of v_{L}. We call this the reduction of ϕ over $\left(L, v_{L}\right)$ with respect to the inertial model \mathcal{X}_{0}.

If we fix ϕ and \mathcal{X}_{0} then there exists $\left(L, v_{L}\right)$ such that the curves \bar{Y} and \bar{X} are reduced. If this is the case, any further extension of $\left(L, v_{L}\right)$ will not change \bar{Y} and \bar{X} in an essential way (more precisely, it will only replace \bar{Y} and \bar{X} by their base extensions to the larger residue field). Therefore we call the models \mathcal{Y} and \mathcal{X} permanent.
We say that \mathcal{X}_{0} is a semistable inertial model of ϕ if the permanent models \mathcal{Y} and \mathcal{X} are semistable, and all irreducible components of the (semistable) curves \bar{Y} and \bar{X} are smooth (i.e. they do not intersect themselves).
The class ReductionTree defined in this module is a datastructure which encodes a cover $\phi: Y \rightarrow X$ and an inertial model \mathcal{X}_{0} as above, and provides functionality for computing the reduction $\bar{\phi}: \bar{Y} \rightarrow \bar{X}$ with respect to extensions $\left(L, v_{L}\right)$. In particular, it allows us to check whether the given inertial model \mathcal{X}_{0} is semistable and, if this is the case, to compute the semistable reduction of the curve Y.

The inertial model

The inertial model \mathcal{X}_{0} of X is determined by a Berkovich tree T on the analytic space $X^{a n}$ (the Berkovich line over \hat{K}, the completion of K with respect to v_{K}). Thus,

- the irreducible components of the special fiber of \mathcal{X}_{0} (called the inertial components) correspond to the vertices of T which are points of type II on $X^{a n}$.
- the vertices of T which are points of type I (i.e. closed points on X) are considered marked points on X
- an edge of T connecting two points of type II correspond to the point of intersection of the two corresponding inertial components
- an edge of T connecting a point of type II and a point of type II corresponds to the specialization of a marked point to an inertial component

In particular, the inertial model \mathcal{X}_{0} is a marked model. As a result, the models \mathcal{X} and \mathcal{Y} induced by \mathcal{X}_{0} and an extension $\left(L, v_{L}\right)$ are marked models, too. The condition that \mathcal{X}_{0} is a semistable inertial model therefore implies that \mathcal{X} and \mathcal{Y} are marked semistable models, for L / K sufficiently large. Recall that this means that the marked points specialize to the smooth points on the special fiber.

Reduction components

Let us fix an inertial component Z_{0}. The interior of Z_{0} is the affinoid subdomain of $X^{a n}$ consisting of all points which specialize to a point on Z_{0} which is neither the point of intersection with another inertial component nor the specialization of a marked point (exception: if there is a unique inertial component and no marking then this is all of $X^{a n}$ and not an affinoid). We have to choose a basepoint for Z_{0}, which is a closed point on X lying inside the interior. This choice is made in a heuristic manner; the degree of the base point should be as small as possible. Then a splitting field for Z_{0} is a finite extension $\left(L, v_{L}\right)$ of $\left(K, v_{K}\right)$ with the property that the base point and all points on Y above it are \hat{L}-rational (where \hat{L} denotes the completion of L with respect to v_{L}).

AUTHORS:

- Stefan Wewers (2017-8-10): initial version

EXAMPLES:

```
sage: from mclf import *
sage: FX.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(FX, v_2)
sage: T = BerkovichTree(X, X.gauss_point())
sage: T, _ = T.add_point(X.infty())
sage: R.}\langle\textrm{Y}\rangle=\textrm{FX[]
sage: FY.<y> = FX.extension(y^2-x^3-1)
sage: Y = SmoothProjectiveCurve(FY)
sage: RT = ReductionTree(Y, v_2, T)
sage: RT
A reduction tree for the smooth projective curve with Function field in y defined by,
\hookrightarrowy^2 - x^3 - 1, relative to 2-adic valuation
sage: RT.inertial_components()
[inertial component of reduction tree with interior Elementary affinoid defined by
v(x) >= 0
]
```

TODO:

- better documentation
- more doctests

```
class mclf.semistable_reduction.reduction_trees.InertialComponent ( }R\mathrm{ ,
                                    is_separable=True)
    Bases: SageObject
```

Return the inertial component corresponding to a type-II-point which is a vertex of T.

INPUT:

- R - a reduction tree
- xi - a point of type II on the Berkovich line X underlying R; it is assumed that ξ is a vertex of the Berkovich tree T underlying R
- is_separable - boolean (default: True)

OUTPUT: The base component corresponding to ξ.
It is assumed that ξ is a vertex of the given Berkovich tree. It thus corresponds to an irreducible component of the special fiber of the inertial model \mathcal{X}_{0}. If this is not the case, an error is raised.

The inertial component which is generated by this command is an object for hosting methods which compute information about the irreducible components of models Y of X lying above ξ, over various extensions of the base field.

basepoint()

Return the base point.
The basepoint is a type-I-point on the underlying Berkovich line which specializes to the interior of this component of the special fiber of \mathcal{X}_{0}. If no base point is given when the base component was created, then such a point is computed now.

```
berkovich_line()
```

Return the underlying Berkovich line X.

component ()

Return the smooth projective curve underlying this inertial component.
Note that the constant base field of this curve is, by definition, the residue field of the base valuation. This may differ from the field of constants of its function field.
component_degree ($u=\infty$)
Return the sum of the degrees of the upper components above this inertial component.
Here the degree of an upper component ist the degree of its field of constants, as extension of the constant base field.

function_field()

Return the function field of this inertial component (which is the residue field of the valuation corresponding to it).
interior()
Return the interior of this inertial component.
OUTPUT:
an elementary affinoid subdomain of the underlying Berkovich line.
The interior of a base component is the elementary affinoid subdomain of the underlying Berkovich line whose canonical reduction is an open affine subset of this inertial component of the inertial model \mathcal{X}_{0}.

It is chosen such that the canonical reduction does not contain the points of intersection with the other components of $\mathcal{X}_{0, s}$ and is disjoint from the residue classes of the marked points.

```
is_separable()
```

Return True is this inertial component is separable.
lower_components ($u=\infty$)
Return the lower components relative to a given extension of the base field.
INPUT:

- u-an integer, or Infinity (default: Infinity)

OUTPUT: the list of lower components of the model of the reduction tree lying over this base component. If $u=\infty$ then these components are computed over the splitting field of the base component. Otherwise, u is assumed to be a break in the ramification filtration of the splitting field, and then we use the corresponding subfield.

The entries of the list correspond to the irreducible components of the special fiber of the v_{L}-model \mathcal{X} (the normalization of \mathcal{X}_{0}) lying over the given inertial component. By definition, the constant base field of these components is the residue field of v_{L} (and it may differ from its field of constants).
outdegree ($u=\infty$)
Return the outdegree of this inertial component.
INPUT:

- u-an integer, or Infinity (default: Infinity)

OUTPUT: the sum of the degrees of all edges emanating from components of the curve \bar{Y}^{u} which lie above this inertial component.
Here u is a break in the ramification filtration of splitting field of this inertial component, and the curve \bar{Y}^{u} is the special fiber of the reduction of Y over the corresponding subfield L^{u} (with respect to the given inertial model). By edge we mean an edge of the component graph of the curve \bar{Y}^{u}; it corresponds to a point in which two components intersect. We call an edge outgoing (with respect to this inertail component) if it lies above an edge of the component graph of the special fiber of the inertial model which is directed away from this inertial component. The degree of an (upper) edge is the degree of the corresponding point of \bar{Y}^{u}, with respect to the residue field of L^{u}.

```
outgoing_edges()
```

Return the list of outgoing edges from this inertial component.
Here an edge is a point on this inertial component where it intersects another component; so it corresponds to an edge on the Berkovich tree underlying the chosen inertial model. Outgoing is defined with respect to the natural orientation of the Berkovich tree.
reduce (f)
Return the reduction of a rational function to this component.
INPUT:

- f - an element of the function field of the Berkovich line

It is assumed that f a unit of the valuation ring corresponding to this component.
OUTPUT: the image of f in the function field of this component.
EXAMPLES:

```
sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^3-1, 2)
sage: Y3 = SemistableModel(Y, QQ.valuation(3))
sage: Z = Y3.reduction_tree().inertial_components()[1]
sage: f = Z.valuation().element_with_valuation(1/2)^2/3
sage: Z.reduce(f)
x
```

```
reduction_conductor()
```

Return the contribution of this inertial component to the conductor exponent.
OUTPUT: an integer f_{Z} (where Z is this inertial component).
The conductor exponent f_{Y} of the curve Y can be written in the form

$$
f_{Y}=1+\sum_{Z} f_{Z}
$$

where Z runs over all inertial components of the reduction tree and f_{Z} is an integer, called the contribution of Z to the conductor exponent.

TODO: Write better documentation.
reduction_genus ($u=\infty$)
Return the sum of the genera of the upper components.

INPUT:

- u-an integer, or Infinity (default: Infinity)

OUTPUT: a nonnegative integer, the sum of the genera of the upper components for this base component, computed with respect to the splitting field. If $u \neq \infty$ then it is assumed that u is a break in the ramification filtration of the splitting field, and then the corresponding subfield is used instead.
reduction_tree ()
Return the reduction tree of this component.
splitting_field (check=False)
Return a splitting field for this inertial component.
INPUT:

- check - a boolean (default: False)

OUTPUT: a weak Galois extension $\left(L, v_{L}\right)$ of the base field.
At the moment, the splitting field of a inertial component is a weak Galois extension $\left(L, v_{L}\right)$ of the base field with the following properties:

- the basepoint becomes rational over the strict henselization of $\left(L, v_{L}\right)$
- all lower components have multiplicities one over $\left(L, v_{L}\right)$
- if the inertial component is marked as separable then the fiber of the cover $\phi: Y \rightarrow X$ over the base point splits over the strict henselization of $\left(L, v_{L}\right)$

Warning: For the moment, this only works if the basepoint is contained inside the closed unit disk.
type_II_point()
Return the type-II-point ξ corresponding to this base component.
upper_components ($u=\infty$)
Return the upper components relative to a given extension of the base field.

INPUT:

- u-an integer, or Infinity (default: Infinity)

OUTPUT: the list of upper components of the model of the reduction tree over this inertial component. If $u=$ Infinity then the splitting field of this inertial component is used to compute the upper components. Otherwise, u must be step in the ramification filtration of the splitting field, and then the corresponding subfield is used.
class mclf.semistable_reduction.reduction_trees.LowerComponent ($Z 0, v L, v, p h i$)
Bases: mclf.semistable_reduction.reduction_trees.ReductionComponent
Return the lower component corresponding to a given valuation.
A lower component is a reduction component Z on the base change X_{L} of the Berkovich line X to some finite extension L / K. It is by construction the inverse image of a given inertial component Z_{0} on X, which is part of a reduction tree.

INPUT:

- Z 0 - an inertial component of a reduction tree Y
- vL - a discrete valuation on a finite extension L of the base field of Y, extending the base valuation on Y
- v - a discrete valuation on the base extension to L of the function field F_{X}, extending v_{L}
- phi - the natural morphism from the function field of ZO into the residue field of v

OUTPUT: The lower component above Z corresponding to v.
fiber_degree_in_upper_components (P)
Return the sum of the absolute degrees of the points above P on all upper components.
map_to_inertial_component ()
Return the natural map from this lower component to its inertial component.
EXAMPLES:

```
sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^3-x, 2)
sage: Y3 = SemistableModel(Y,QQ.valuation(3))
sage: Z = Y3.reduction_tree().inertial_components() [0]
sage: W = Z.lower_components()[0]
sage: f = W.map_to_inertial_component()
sage: f.domain()
the smooth projective curve with Rational function field in x over Finite\checkmark
\hookrightarrowField of size 3
sage: f.codomain()
the smooth projective curve with Rational function field in x over Finite!
\hookrightarrowField of size 3
```

upper_components ()
Return the list of all upper components lying above this lower component.
This lower component corresponds to a discrete valuation v on a rational function field $L(x)$ extending the valuation v_{L}, where L / K is some finite extension of the base field K. The upper components correspond to the extensions of v to the function field of Y_{L} (which is a finite extension of $L(x)$).

Since the computation of all extensions of a nonstandard valuation on a function field to a finite extension is not yet part of Sage, we have to appeal to the MacLane algorithm ourselves.

EXAMPLES:

This example shows that extending valuations also works if the equation is not integral wrt the valuation v

```
sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(5*x^3 + 1, 2)
sage: Y2 = SemistableModel(Y, QQ.valuation(5))
sage: Y2.is_semistable() # indirect doctest
True
```

class mclf.semistable_reduction.reduction_trees.ReductionComponent
Bases: SageObject
The superclass for the classes LowerComponent and UpperComponent.
base_field()
Return the base field of this reduction component.
base_valuation()
Return the base valuation of this reduction component.
component ()
Return the normalization of this reduction component.
constant_base_field()
Return the constant base field of this reduction component.
Note that this field is isomorphic but not equal to the residue field of the base valuation. The isomorphism can be obtained via the restriction of isomorphism between the residue field of the valuation
corresponding to the component and the function field of the component (can be obtained via self. from_residue_field()).

from_residue_field()

Return the isomorphism from the residue field of the valuation corresponding to this reduction component to its function field.

function_field()

Return the function field of this reduction component.
Note that the function field of this reduction component is the residue field of the corresponding valuation v. It must not be confused with the domain of v, which is the function field of the generic fiber.

function_field_of_generic_fiber()

Return the function field of the generic fiber of the model underlying this reduction component.

inertial_component()

Return the inertial component underlying this reduction component.

```
multiplicity()
```

Return the multiplicity of this reduction component.
By definition, this is equal to the ramification index of the valuation corresponding to this component over the base valuation.
reduce (f)
Return the image of a function on the generic fiber to this component.
reduction_tree()
Return the reduction tree underlying the reduction component.
valuation()
Return the valuation corresponding to this reduction component.
class mclf.semistable_reduction.reduction_trees. ReductionTree ($Y, v K, T$, separable_components=None)

Bases: SageObject

Initialize and return a reduction tree associated to a curve and a valuation.
INPUT:

- Y - a curve over a basefield K, given as SmoothProjectiveCurve
- vK - a discrete valuation on K
- T - a Berkovich tree on the Berkovich line $X^{a n}$ underlying $\left(Y, v_{K}\right)$
- separable_components - a list of type-II-points on $X^{a n}$ which are vertices of T (or None)

OUTPUT: a reduction tree for Y relative to vK ; the inertial model \mathcal{X}_{0} is the marked model of X induced by the Berkovich tree T.
Note that the tree T will be modified by the creation of the reduction tree.

Note: In the present release, the base field K must be the field of rational numbers.
add_inertial_component (xi)
Add a new inertial component to the list of such.
INPUT:

- xi - a point of type II on the underlying Berkovich line; it is assumed that xi is a vertex of the Berkovich tree T

OUTPUT: a new inertial component Z is created and appended to the list of all inertial components. Moreover, Z is assigned to the new attribute inertial_component of the subtree of T with root ξ.

```
base_field()
```

Return the base field.

base_valuation()

Return the specified valuation of the base field.

berkovich_line()

Return the Berkovich line X of which the curve Y is a cover.

```
berkovich_tree()
```

Return the Berkovich tree underlying this reduction tree.

```
curve()
```

Return the curve Y.

inertial_components()

Return the list of inertial components.

is_semistable()

Check wether the reduction specified by this object is semistable.

```
reduction_conductor()
```

Return the conductor of the curve.
OUTPUT: a nonnegative integer, which is the conductor of the local Galois representation associated to the reduction which is specified in this ReductionTree. If the reduction is semistable, then the result is the conductor of Y.

TODO: Write better documentation.
EXAMPLES:
We check that the conductor exponent takes the component graph into account as well:

```
sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^3 + x^2 + 3, 2)
sage: Y3 = SemistableModel(Y, QQ.valuation(3))
sage: Y3.is_semistable()
True
sage: Y3.conductor_exponent() # indirect doctest
1
```

reduction_genus()
Return the genus of the reduction.
OUTPUT: a nonnegative integer, which is the arithmetic genus of the reduction of the curve Y specified by the data in this ReductionTree, provided this reduction is semistable.

In fact, the number we compute is the sum of the genera of the upper components (i.e. the normalizations of the irreducible components of \bar{Y}) and the number of loops of the component graph of \bar{Y}, which is (number of double points) - (number of components) +1 .

EXAMPLES:
We test that the arithmetic genus of a totally degenerate curve is computed correctly:

```
sage: from mclf import *
sage: R.<x> = QQ[]
```

```
sage: v_3 = QQ.valuation(3)
sage: f = (x^2 - 3)* (x^2 + 3)* (x^3 - 3)
sage: Y = SuperellipticCurve(f, 2)
sage: Y.genus()
3
sage: Y3 = SemistableModel(Y, v_3)
sage: Y3.reduction_tree().reduction_genus()
3
```

class mclf.semistable_reduction.reduction_trees. UpperComponent (Z, v)
Bases: mclf.semistable_reduction.reduction_trees. ReductionComponent

Return the upper component above this lower component, corresponding to a given valuation.
INPUT:

- Z - a lower component of a reduction tree Y
- v - a discrete valuation on the base extension to L of the function field F_{Y}, extending the valuation corresponding to Z

OUTPUT: The upper component above Z corresponding to v.
Note that the constant base fields of the upper and the lower components are equal, by definition, and isomorphic to the residue field of L.
field_of_constants_degree()
Return the degree of the field of constants over the constant base field of this upper reduction component.
genus()
Return the genus of this upper reduction component.
lower_component ()
Return the lower component underneath this upper component.
map_to_lower_component ()
Return the natural map from this upper component to the lower component beneath.
mclf.semistable_reduction.reduction_trees.make_function_field (K)
Return the function field isomorphic to this field, an isomorphism, and its inverse.

INPUT:

- K - a field

OUTPUT: A triple (F, ϕ, ψ), where F is a rational function field, $\phi: K \rightarrow F$ is a field isomorphism and ψ the inverse of ϕ.
It is assumed that K is either the fraction field of a polynomial ring over a finite field k, or a finite simple extension of such a field.

In the first case, $F=k_{1}(x)$ is a rational function field over a finite field k_{1}, where k_{1} as an absolute finite field isomorphic to k. In the second case, F is a finite simple extension of a rational function field as in the first case.

Note: this command seems to be partly superflous by now, because the residue of a valuation is already of type "function field" whenever this makes sense. However, even if K is a function field over a finite field, it is not guaranteed that the constant base field is a 'true' finite field, and then it is important to change that.

chapter 5

Indices and tables

- genindex
- modindex
- search
[We17] S. Wewers, Semistable reduction of superelliptic curves of degree p, preprint, 2017.

MCLF Documentation

Python Module Index

m

mclf.berkovich.affinoid_domain, 39
mclf.berkovich.berkovich_line, 19
mclf.berkovich.berkovich_trees, 31
mclf.berkovich.piecewise_affine_functions, 48
mclf.berkovich.type_V_points, 37
mclf.curves.morphisms_of_smooth_projective_curves, 14
mclf.curves.smooth_projective_curves, 3
mclf.curves.superelliptic_curves, 17
mclf.padic_extensions.fake_padic_completions, 59
mclf.padic_extensions.fake_padic_embeddings, 66
mclf.padic_extensions.fake_padic_extensions, 67
mclf.padic_extensions.weak_padic_galois_extensions, 69
mclf.semistable_reduction.admissible_reduction, 76
mclf.semistable_reduction.reduction_trees, 81
mclf.semistable_reduction.semistable_models, 73
mclf.semistable_reduction.superp_models, 77

A

```
absolute_degree() (in module
    mclf.curves.smooth_projective_curves), 12
absolute_degree()
    (mclf.curves.smooth_projective curves.PointOnSmafothProfectivecurve in
    method),5 mclf.berkovich.affinoid_domain), 43
absolute_degree() all_polynomials() module
    (mclf.padic_extensions.fake_padic_completions.FakepAdic_Cychfp&&ttbovich.affinoid_domain), 47
    method),60 approximate_factorization()
absolute_inertia_degree() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompl
```



```
    method),60 approximate_irreducible_factor()
absolute_ramification_degree()
```



```
    method),60
adapt_to_function()
    (mclf.berkovich.berkovich_trees.BerkovichTree
    method), }3
add_inertial_component()
    (mclf.semistable_reduction.reduction_trees.Reduc|onTree
    method), 87 base_change_matrix()
add_point() (mclf.berkovich.berkovich_trees.BerkovichTree (mclf.padic_extensions.fake_padic_completions.FakepAdicComp
    method), }3
adjacent_vertices()
    (mclf.berkovich.berkovich_trees.BerkovichTree
    method), }3
AdmissibleModel (class in method),68
    mclf.semistable_reduction.admissible_reduction),base_field()(mclf.semistable_reduction.reduction_trees.ReductionCo
    7 7 \text { method), 86}
AffineFunction (class in base_field()(mclf.semistable_reduction.reduction_trees.ReductionTre
    mclf.berkovich.piecewise_affine_functions),
    50
affinoid_domain() method), 25
    method), }6
base_field() (mclf.berkovich.berkovich_line.PointOnBerkovichLine
base_field() (mclf.padic_extensions.fake_padic_extensions.FakepAdic
    (mclf.berkovich.piecewise_affine_functions.Piecewise&fine=tuationon () (mclf.padic_extensions.fake_padic_completions.Fa
    method),54
    method),61
affinoid_subtree() base_valuation()(mclf.semistable_reduction.reduction_trees.Reduct
    (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovizhdthned), }8
    method),40 base_valuation() (mclf.semistable_reduction.reduction_trees.Reduct
affinoid_subtree_in_hole()
    method), }8
```


MCLF Documentation

base＿valuation（）（mclf．semistable＿reduction．semistable＿modelsn8elmoidta，aßReModel method）， 75 component＿jumps（）（in module
basepoint（）（mclf．semistable＿reduction．reduction＿trees．InertialCmalfdreenkbvich．berkovich＿trees）， 36 method）， 82 components（）（mclf．berkovich．affinoid＿domain．AffinoidDomainOnBerk
berkovich＿line（）（mclf．berkovich．affinoid＿domain．AffinoidDomanitßorB）erkbovichLine method）， 41 components（）（mclf．semistable＿reduction．semistable＿models．Semistabl
berkovich＿line（）（mclf．berkovich．berkovich＿line．PointOnBerkowielldaioh， 76 method）， 25 components＿of＿positive＿genus（）
berkovich＿line（）（mclf．berkovich．berkovich＿trees．BerkovichTre（enclf．semistable＿reduction．semistable＿models．SemistableModel method）， 33
method）， 76
berkovich＿line（）（mclf．berkovich．piecewise＿affine＿functiquass．Affincefinnetioned＿components（） method）， 50 （mclf．berkovich．affinoid＿domain．AffinoidTree
berkovich＿line（）（mclf．berkovich．piecewise＿affine＿functions．DinecthadPatht method）， 51 compute＿semistable＿reduction（）
berkovich＿line（）（mclf．berkovich．piecewise＿affine＿functions．D（xmmcififisemistable＿reduction．semistable＿models．SemistableModel method）， 53 method）， 76
berkovich＿line（）（mclf．berkovich．piecewise＿affine＿functiquns．PeieccanisieAffale Etnctiøduct ion（） method）， 55 （mclf．semistable＿reduction．superp＿models．SuperpModel
berkovich＿line（）（mclf．berkovich．type＿V＿points．TypeVPointOnbiethodi），hLine method）， 39 compute＿separable＿model（）
berkovich＿line（）（mclf．semistable＿reduction．reduction＿trees．In（emtiffl＿Canqxosvewoth＿projective＿curves．SmoothProjectiveCurve method）， 83 method）， 7
berkovich＿line（）（mclf．semistable＿reduction．reductionotmpastReduetiondte）e module method）， $88 \quad$ mclf．curves．smooth＿projective＿curves）， 12
berkovich＿tree（）（mclf．semistable＿reduction．reductiowotrelesdReductiondぁereent（） method）， 88 （mclf．semistable＿reduction．semistable＿models．SemistableModel
BerkovichLine（class in method）， 76 mclf．berkovich．berkovich＿line）， 22 connected＿component＿tree（）
BerkovichTree（class in（mclf．berkovich．affinoid＿domain．AffinoidDomainOnBerkovichLin mclf．berkovich．berkovich＿trees）， 32 method）， 41
boundary（）（mclf．berkovich．affinoid＿domain．AffinoidDomainQqBerkdwichbhiponent＿tree（） method）， 41 （mclf．berkovich．affinoid＿domain．UnionOfDomains
boundary＿point（）（mclf．berkovich．type＿V＿points．TypeVPointOnBuethoduch＿hine method）， 39
connected＿components（）
（mclf．berkovich．affinoid＿domain．AffinoidTree
C method）， 44
characteristic＿polynomial（）
constant＿base＿field（）
（mclf．padic＿extensions．fake＿padic＿completions．FakepAdic＿Crmblfiektねれes．smooth＿projective＿curves．SmoothProjectiveCurve method）， 61
characteristic＿polynomial＿mod（）constant＿base＿field（）
 method）， 61 method）， 86
children（）（mclf．berkovich．berkovich＿trees．BerkovichTreenstant＿base＿field（） method）， 33
ClosedUnitDisk
（class
in method）， 76 mclf．berkovich．affinoid＿domain）， 45
contains＿infty（）（mclf．berkovich．piecewise＿affine＿functions．Domair
codomain（）（mclf．curves．morphisms＿of＿smooth＿projective＿curves！M\＆thphlsmすfSmoothProjectiveCurves method）， 16 coordinate＿functions（）
 method）， 83 method）， 7
component（）（mclf．semistable＿reduction．reduction＿trees．Red method）， 86 method）， 5
component＿degree（）copy（）（mclf．berkovich．affinoid＿domain．AffinoidTree （mclf．semistable＿reduction．reduction＿trees．InertialComponełtthod）， 44

MCLF Documentation

```
copy() (mclf.berkovich.berkovich_trees.BerkovichTree domain() (mclf.berkovich.piecewise_affine_functions.AffineFunction
    method),33 method),50
count_points() (mclf.curves.smooth_projective_curvesd&mmaithProf_entilydevukweich.piecewise_affine_functions.PiecewiseAffineFur
    method), }
    method),55
covering_degree() domain() (mclf.curves.morphisms_of_smooth_projective_curves.Morphi
    (mclf.curves.smooth_projective_curves.SmoothProjectiveCummethod), 16
    method), }
covering_degree()
    (mclf.curves.superelliptic_curves.SuperellipticCurze_f_of_valuation() (in module
    method),18 mclf.curves.smooth_projective_curves), }1
create_graph_recursive() (in module element_from_vector()
    mclf.berkovich.berkovich_trees), 36 (mclf.padic_extensions.fake_padic_completions.FakepAdicCompl
curve () (mclf.curves.smooth_projective_curves.PointOnSmoothProjRethod,u6建
    method),5 ElementaryAffinoidOnBerkovichLine (class
curve () (mclf.semistable_reduction.reduction_trees.ReductionTree in mclf.berkovich.affinoid_domain), 46
        method), 88 equation () (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
curve() (mclf.semistable_reduction.semistable_models.SemistableMqqedqbd), 28
    method),76 etale_locus() (mclf.semistable_reduction.superp_models.SuperpMod
        method), }7
D
    eval () (mclf.padic_extensions.fake_padic_embeddings.FakepAdicEmbed
```

degree () (mclf.curves.smooth_projective_curves.PointOnSmoothP nojextltionle)C反rive
method), 5 extension () (mclf.padic_extensions.fake_padic_completions.FakepAdi
degree () (mclf.curves.smooth_projective_curves.SmoothProjectivenuethed), 62
method), 7 extension_degree() (in module
degree() (mclf.padic_extensions.fake_padic_completions.FakepAdinClgrapotetinsmooth_projective_curves), 13
method), 61 extension_field()
degree () (mclf.padic_extensions.fake_padic_extensions.FakepAdic_Fwrdff.piodic_extensions.fake_padic_extensions.FakepAdicExtensio
method), 68
method), 68
degree_of_inseparability() extension_of_finite_field() (in module
(mclf.curves.smooth_projective_curves.SmoothProjectiveCumnad.curves.smooth_projective_curves), 13
method), 7
DirectedPath (class in F
mclf.berkovich.piecewise_affine_functions),
factors_of_ramification_polynomial()
51
(mclf.padic_extensions.weak_padic_galois_extensions.WeakPadic
direction_from_parent()
method), 71
(mclf.berkovich.berkovich_trees.BerkovichTree
method), 33
FakepAdicCompletion (class in
mclf.padic_extensions.fake_padic_completions),
direction_to_parent()
(mclf.berkovich.berkovich_trees.BerkovichTree
method), 33
FakepAdicEmbedding (class in
mclf.padic_extensions.fake_padic_embeddings),
Discoid(class in mclf.berkovich.piecewise_affine_functions),
66
52 FakepAdicExtension (class in
discoid() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichtaikly.padic_extensions.fake_padic_extensions), method）， 26 method）， 28 method）， 16
divisor＿of＿poles（） （mclf．curves．smooth＿projective＿curves．SmoothProjectiveCurtethod）， 8
method), 7
divisor_of_zeroes()
fiber_degree () (mclf.curves.morphisms_of_smooth_projective_curves
method), 16
(mclf.curves.smooth_projective_curves.SmoothProjegtixecturegree_in_upper_components ()
method), 8
(mclf.semistable_reduction.reduction_trees.LowerComponent
Domain (class in mclf.berkovich.piecewise_affine_functions),
53
method), 85

```
field_of_constant_degree_of_polynomial() graph() (mclf.berkovich.berkovich_trees.BerkovichTree
    (in module mclf.curves.smooth_projective_curves), method),34
    13
field_of_constants()
    H
    (mclf.curves.smooth_projective_curves.SmoothPrqigctiv\beta&urdi&t () (mclf.berkovich.berkovich_trees.BerkovichTree
    method), 8
        method), 34
field_of_constants_degree() holes() (mclf.berkovich.affinoid_domain.AffinoidTree
    (mclf.curves.smooth_projective_curves.SmoothProjectiveCufivethod), 45
    method), }
field_of_constants_degree() |
    (mclf.semistable_reduction.reduction_trees.UpperCompgnent_approximation()
    method), }8
find_next_points_with_value()
    (mclf.padic_extensions.fake_padic_embeddings.FakepAdicEmbea
    method),67
    (mclf.berkovich.piecewise_affine_functions.PiecewisfAffineFunctigh), rox imation()
    method),55 (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
find_next_zeroes()
    method), 26
    (mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunctigproximation()
    method),56 (mclf.berkovich.berkovich line.TypeIPointOnBerkovichLine
find_point() (mclf.berkovich.berkovich_trees.BerkovichTree
    method), 28
    method),33 inequalities()(mclf.berkovich.affinoid_domain.ElementaryAffinoidO
find_point_with_value()
    (mclf.berkovich.piecewise_affine_functions.AffineF_unction__ities()(mclf.berkovich.piecewise_affine_functions.Domain
    method), 50 method),53
find_zero() (mclf.berkovich.berkovich_line.BerkovichLin\ellertia_degree() (mclf.padic_extensions.fake_padic_completions.Fa
    method), 22
    method),62
from_residue_field() inertia_degree()(mclf.padic_extensions.fake_padic_extensions.Fake
    (mclf.semistable_reduction.reduction_trees.ReductionCompgnernod),68
    method),87 inertial_component()
function_field()(mclf.berkovich.berkovich_line.PointOnBerkovi=_\lf.inemistable_reduction.reduction_trees.ReductionComponent
    method),25
        method), }8
function_field() (mclf.curves.smooth_projective_curyes_SmoothProjectiveCurve ()
        method), }
                                (mclf.semistable_reduction.reduction_trees.ReductionTree
function_field()(mclf.semistable_reduction.reduction_trees.InertifflGq,nఖ&onent
    method), 83 InertialComponent
        (class in
function_field()(mclf.semistable_reduction.reduction_trees.Reduly.tigthCstaplenfetauction.reduction_trees), 82
    method),87 infty() (mclf.berkovich.berkovich_line.BerkovichLine
function_field_of_generic_fiber()
                                    method), }2
    (mclf.semistable_reduction.reduction_trees.ReductionCampoonentrameter ()
    method), 87 (mclf.berkovich.piecewise_affine_functions.DirectedPath
function_field_valuation()
    method), 51
    (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine__point () (mclf.berkovich.piecewise_affine_functions.AffineFu)
    method),28
                        method),50
G
initial_point() (mclf.berkovich.piecewise_affine_functions.Directed)
    method), 51
gauss_point () (mclf.berkovich.berkovich_line.Berkovichhineial_point() (mclf.berkovich.piecewise_affine_functions.Piecewis
    method), 22
                        method),56
```



```
    method),62 method),52
genus () (mclf.curves.smooth_projective_curves.SmoothProjectivequ_ur*glue () (mclf.berkovich.piecewise_affine_functions.AffineFu
    method),9 method),50
genus() (mclf.semistable_reduction.reduction_trees.UpperGq⿴囗十旦&nentvalue () (mclf.berkovich.piecewise_affine_functions.Piecewis
    method),89
    method),56
good_reduction() (mclf.curves.smooth_projective_cury@s\inStgqothProiectiveGurvernramified_subfield()
    method),10
    (mclf.padic_extensions.fake_padic_completions.FakepAdicComp
```


MCLF Documentation

method), 62 is_in_unit_disk()
interior() (mclf.semistable_reduction.reduction_trees.InertialCotrpolf.entrkovich.berkovich_line.TypeIIPointOnBerkovichLine method), 83 method), 26
intersection() (mclf.berkovich.affinoid_domain.AffinoídDämainQinBerckísish(Dine
method), 41
intersection_with_unit_disk()
(mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
 method), 41
intersection_with_unit_disk()
(mclf.berkovich.affinoid_domain.AffinoidTree method), 45
is_inductive() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovi method), 26
is_inductive() (mclf.berkovich.berkovich_line.TypeIPointOnBerkovic method), 28
inverse_generator() (in module
mclf.berkovich.berkovich_line), 29
is_infinity() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovich method), 27
inverse_parameter(
(mclf.berkovich.berkovich_line.PointOnBerkovichLi¥z_leaf () (mclf.berkovich.berkovich_trees.BerkovichTree
method), 25 method), 34
is_approximate_irreducible_factor() is_limit_path() (mclf.berkovich.piecewise_affine_functions.Directed
(mclf.padic_extensions.fake_padic_completions.FakepAdic_Goentpbeti) $)$ й 2
method), 62 is_limit_point () (mclf.berkovich.berkovich_line.TypeIIPointOnBerk
is_constant() (mclf.berkovich.piecewise_affine_functions.Affine Finuethtodir), 27
method), 50 is_limit_point () (mclf.berkovich.berkovich_line.TypeIPointOnBerko
is_constant () (mclf.berkovich.piecewise_affine_functions.PiecewinetAdfangeE\&nction
method), 56 is_Qp () (mclf.padic_extensions.fake_padic_completions.FakepAdicComp
is_empty () (mclf.berkovich.affinoid_domain.AffinoidDomainOnBewkethiedhL,ine
method), 42 is_semistable() (mclf.semistable_reduction.reduction_trees.Reductio
is_empty () (mclf.berkovich.affinoid_domain.ElementaryAffinoidOnBedhkoh)ich\&ine
method), 46 is_semistable () (mclf.semistable_reduction.semistable_models.Semi
is_equal () (mclf.curves.smooth_projective_curves.PointOnSmootlmPentjecdtiver Curve
method), 5 is_separable () (mclf.curves.smooth_projective_curves.SmoothProjec
is_full_berkovich_line() method), 10
(mclf.berkovich.affinoid_domain.AffinoidDomainanB_esleapichłibize () (mclf.semistable_reduction.reduction_trees.InertialCo
method), 42 method), 83
is_full_berkovich_line() is_structure_map()
($m c l$ l.berkovich.affinoid_domain.ElementaryAffinoidOnBerk(omidfiLinrees.morphisms_of_smooth_projective_curves.Morphism method), 46
method), 17
is_full_berkovich_line()
(mclf.berkovich.piecewise_affine_functions.Doma
method), 53 kummer_gen () (mclf.curves.superelliptic_curves.SuperellipticCurve
is_gauss_point () (mclf.berkovich.berkovich_line.TypeIIPointOnRetlkodich\&ine
method), 26
is_gauss_point () (mclf.berkovich.berkovich_line.TypdLPointOnBerkovichLine
method), 28 leaves() (mclf.berkovich.berkovich_trees.BerkovichTree
is_generator() (in module method), 34
mclf.berkovich.berkovich_line), 29 lower_component ()
is_in () (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichthtinemistable_reduction.reduction_trees.UpperComponent
method), 42 method), 89
is_in() (mclf.berkovich.affinoid_domain.AffinoidTree lower_components()
method), 45
) (mclf.berkovich.affinoid_domain.UnionOfDomains
(mclf.semistable_reduction.reduction_trees.InertialComponent
is_in() (mclf.berkovich.affinoid_domain.UnionOfDomains method), 83
method), 47 lower_jumps () (mclf.padic_extensions.weak_padic_galois_extensions.
is_in_domain() (mclf.berkovich.piecewise_affine_functions.Affinemethctip), 71
method), 50 LowerComponent
(class in
 method), 56

MCLF Documentation

M

method), 45
make_child() (mclf.berkovich.berkovich_trees.Berkovichtreémal_points () (mclf.berkovich.affinoid_domain.UnionOfDomains method), 34 method), 47
make_finite_field() (in module minor_valuation() mclf.curves.smooth_projective_curves), 13 (mclf.berkovich.type_V_points.TypeVPointOnBerkovichLine
make_function_field() (in module method), 39
mclf.semistable_reduction.reduction_trees), 89 minpoly_over_unramified_subextension()
make_parent () (mclf.berkovich.berkovich_trees.BerkovichTree (mclf.padic_extensions.fake_padic_completions.FakepAdicComp method), 34 method), 63
map_to_inertial_component() MorphismOfSmoothProjectiveCurves (class in (mclf.semistable_reduction.reduction_trees.Lower_Componehtclf.curves.morphisms_of_smooth_projective_curves), method), 86 15
map_to_lower_component () multiplicity() (mclf.semistable_reduction.reduction_trees.Reduction (mclf.semistable_reduction.reduction_trees.UpperComponentethod), 87
method), 89
matrix() (mclf.padic_extensions.fake_padic_completions. FakepAdicCompletion method), 63 normalized_valuation()
mclf.berkovich.affinoid_domain (module), (mclf.padic_extensions.fake_padic_completions.FakepAdicCompl 39
mclf.berkovich.berkovich_line (module), 19 normalized_valuation()
mclf.berkovich.berkovich_trees (module), (mclf.padic_extensions.fake_padic_extensions.FakepAdicExtensic 31 method), 68
mclf.berkovich.piecewise_affine_functionsumber_field() (mclf.padic_extensions.fake_padic_completions.Fake) (module), 48 method), 63
mclf.berkovich.type_V_points (module), 37 number_of_components()
mclf.curves.morphisms_of_smooth_projective_curv(melf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLin (module), 14
method), 42
mclf.curves.smooth_projective_curves (module), 3
mclf.curves.superelliptic_curves (mod- open_annuloid() module ule), 17 mclf.berkovich.piecewise_affine_functions),
mclf.padic_extensions.fake_padic_completions 56 (module), 59 open_discoid() (in module
mclf.padic_extensions.fake_padic_embeddings mclf.berkovich.piecewise_affine_functions), (module), 6657
mclf.padic_extensions.fake_padic_extensiopen_discoid() (mclf.berkovich.type_V_points.TypeVPointOnBerkovic (module), 67 method), 39
mclf.padic_extensions.weak_padic_galois_exdend qmelf.curves.smooth_projective_curves.PointOnSmoothProjectiv (module), 69 method), 6
mclf.semistable_reduction.admissible_reda氏tiønal_model_of_curve ()
(module), 76 (mclf.semistable_reduction.admissible_reduction.AdmissibleMod
mclf.semistable_reduction.reduction_trees method), 77
(module), 81 outdegree () (mclf.semistable_reduction.reduction_trees.InertialCompo
mclf.semistable_reduction.semistable_models method), 83
(module), 73 outgoing_edges () (mclf.semistable_reduction.reduction_trees.Inertia
mclf.semistable_reduction.superp_models method), 84 (module), 77
minimal_point() (mclf.berkovich.piecewise_affine_funR:ions.Discoid method), 52 p () (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
 method), 53 p () (mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension
minimal_points() (mclf.berkovich.affinoid_domain.AffinoidDomfiethōferkevichLine method), 42
minimal_points() (mclf.berkovich.affinoid_domain.AffinoidTree

MCLF Documentation

```
p_approximation() (in module polynomial()(mclf.padic_extensions.fake_padic_completions.FakepAd
    mclf.semistable_reduction.superp_models),
        80
p_approximation_generic() (in module
    mclf.semistable_reduction.superp_models),
    80
parameter() (mclf.berkovich.berkovich_line.PointOnBenkowielltinel_branch_divisor()
    method), 25 (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
parameter() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichtlhion), 10
    method),27 prime_of_good_reduction()
parent()(mclf.berkovich.berkovich_trees.BerkovichTree (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
    method),34 method), 10
path() (mclf.berkovich.piecewise_affine_functions.AffineFpunctionipal_divisor()
    method),50 (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
paths() (mclf.berkovich.berkovich_trees.BerkovichTree
    method), }3
permanent_completion()
    (mclf.berkovich.berkovich_trees.BerkovichTree
    method),35
    method), 11
    print_tree() (mclf.berkovich.berkovich_trees.BerkovichTree
        method), }3
    pseudovaluation()
                                (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
phi()(mclf.curves.smooth_projective_curves.SmoothProjectiveCurvenethod), 27
    method),10 pseudovaluation()
PiecewiseAffineFunction (class in (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
    mclf.berkovich.piecewise_affine_functions), method), 28
    53
    pseudovaluation_on_polynomial_ring()
plane_equation()(mclf.curves.smooth_projective_curves.Smootmfond.jleetwwelich:berkovich_line.TypeIIPointOnBerkovichLine
    method),10 method),27
point() (mclf.berkovich.piecewise_affine_functions.Directesl&athovaluation_on_polynomial_ring()
        method),52 (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
point() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurethod), 29
        method),10
    pullback() (mclf.curves.morphisms_of_smooth_projective_curves.Morl
point_close_to_boundary()
        method), 17
        (mclf.berkovich.affinoid_domain.AffinoidDomainQuBlekkoricch_Limmp () (mclf.curves.morphisms_of_smooth_projective_curve,
        method),42 method), }1
point_from_pseudovaluation()
    (mclf.berkovich.berkovich_line.BerkovichLine R
    method),23 ramification_degree()
point_from_pseudovaluation_on_polynomial_ring()(mclf.padic_extensions.fake_padic_completions.FakepAdicComp
        (mclf.berkovich.berkovich_line.BerkovichLine
        method),63
        method), }2
    ramification_degree()
point_from_valuation()
        (mclf.padic_extensions.fake_padic_extensions.FakepAdicExtensio
        (mclf.berkovich.berkovich_line.BerkovichLine
        method),69
        method), 24
```


R

ramification_degree()
point_from_pseudovaluation_on_polynomial_ring ()(mclf.padic_extensions.fake_padic_completions.FakepAdicCompl (mclf.berkovich.berkovich_line.BerkovichLine
ramification_degree()
point_from_valuation()
(mclf.berkovich.berkovich_line.BerkovichLine
inside_discoid() (mclf.berkovich.type_V_points.TypeVPointOnBerkovichLine method $^{\text {(}}$, 11
method), 39 ramification_filtration()
PointOnBerkovichLine (class in (mclf.padic_extensions.weak_padic_galois_extensions.WeakPadic mclf.berkovich.berkovich_line), 24
PointOnSmoothProjectiveCurve (class mclf.curves.smooth_projective_curves), 5
points_with_coordinates() (mclf.curves.smooth_projective_curves.SmoothProfigitivequrat ion_polynomial () method), 10
polynomial() (mclf.curves.superelliptic_curves.SuperellipticCurv@nethod), 71 method), 18
ramification_subfield()

method), 72
ramification_subfields() restrictions()(mclf.berkovich.piecewise_affine_functions.Piecewise (mclf.padic_extensions.weak_padic_galois_extensions.WeakRathoGu)q. method), 72 root () (mclf.berkovich.berkovich_trees.BerkovichTree
ramified_extension()

method), 63 method), 45
random_point() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 11
rational_domain() (in module semistable_reduction()
mclf.berkovich.affinoid_domain), 47 (mclf.semistable_reduction.semistable_models.SemistableModel
rational_function_field() method), 76

method), 11 mclf.semistable_reduction.semistable_models),
reduce () (mclf.padic_extensions.fake_padic_completions.FakepAdic_Completion
method), 64 separable_model()
reduce () (mclf.semistable_reduction.reduction_trees.InertialCompфnfelf.curves.smooth_projective_curves.SmoothProjectiveCurve method), 84 method), 11
reduce () (mclf.semistable_reduction.reduction_trees.Redyctipncotmoneritnts() (in module method), 87 mclf.curves.smooth_projective_curves), 13
reduce_rational_number() separate_two_points() (in module
(mclf.padic_extensions.fake_padic_completions.FakepAdicGRRYlf.letivens.smooth_projective_curves), 14
method), 64
show () (mclf.berkovich.affinoid_domain.AffinoidTree method), 45
 method), 84
method), 43
reduction_conductor() simplify() (mclf.berkovich.affinoid_domain.AffinoidTree
(mclf.semistable_reduction.reduction_trees.ReductionTree method), 45
method), 88 simplify_irreducible_polynomial()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompl
reduction_genus()
(mclf.semistable_reduction.reduction_trees.InertialComponqntthod), 64
method), 84 simplify_tree_at_vertex() (in module
reduction_genus() mclf.berkovich.affinoid_domain), 48
 method), 88 method), 12
reduction_tree () (mclf.semistable_reduction.reductionmtgeełfpertiglecompqeentrve (class in
method), $85 \quad$ mclf.curves.smooth_projective_curves), 6
reduction_tree () (mclf.semistable_reduction.reductiogptreest iedtyctioncomppnent
method), 87
(mclf.semistable_reduction.reduction_trees.InertialComponent

method), 76 stable_reduction()
reduction_tree () (mclf.semistable_reduction.superp_models.Su\#\#REDASEdR\&table_reduction.semistable_models.SemistableModel
method), 80 method), 76
ReductionComponent (class in strict_inequalities()
mclf.semistable_reduction.reduction_trees), 86 (mclf.berkovich.piecewise_affine_functions.Domain
ReductionTree (class in method), 53
mclf.semistable_reduction.reduction_trees), 87 structure_map () (mclf.curves.smooth_projective_curves.SmoothProje
remove_child() (mclf.berkovich.berkovich_trees.BerkovichTree method), 12
method), 35 subextension() (mclf.padic_extensions.fake_padic_extensions.FakepA
remove_point() (mclf.berkovich.berkovich_trees.BerkovichTree method), 69
method), 36
replace_subtree() (in moduler method), 64
mclf.berkovich.berkovich_trees), 37

```
subtrees()(mclf.berkovich.berkovich_trees.BerkovichTr巴фperComponent (class in
    method),36 mclf.semistable_reduction.reduction_trees), }8
sum_of_divisors() (in module (in.curves.smooth_projective_curves),14
SuperellipticCurve (class in valuation()(mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLi
    mclf.curves.superelliptic_curves),18
SuperpModel (class in valuation()(mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLin
    mclf.semistable_reduction.superp_models),
    79
T
terminal_parameter()
    method),65
    (mclf.berkovich.piecewise_affine_functions.Directed&Platl}_tion () (mclf.padic_extensions.fake_padic_extensions.FakepAdicE
    method),52
    method),69
```



```
    method),50
    method), }8
```



```
    method), 52 mclf.berkovich.berkovich_line), 29
```



```
    method), 51 mclf.berkovich.berkovich_line), }3
```



```
    method),43 mclf.berkovich.piecewise_affine_functions),
tu.be () (mclf.berkovich.piecewise_affine_functions.DirectedPath 57
    method), 52 value () (mclf.curves.smooth_projective_curves.PointOnSmoothProjectiv
type () (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLinemethod),6
    method),27 vector() (mclf.padic_extensions.fake_padic_completions.FakepAdicCon
type() (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine method), }6
    method), 29 vertices()(mclf.berkovich.berkovich_trees.BerkovichTree
type_II_point() (mclf.semistable_reduction.reduction_trees.Inentiethø@m,p%nent
    method), }8
TypeIIPointOnBerkovichLine (class in W
    mclf.berkovich.berkovich_line), }2
TypeIPointOnBerkovichLine (class in weak_splitting_field()
    mclf.berkovich.berkovich_line), 27
TypeVPointOnBerkovichLine (class
    mclf.berkovich.type_V_points), 37
        in (meak_Splf.padic_extensions.fake_padic_completions.FakepAdicComp
    method),65
in WeakPadicGaloisExtension (class in
    mclf.padic_extensions.weak_padic_galois_extensions),
    70
U
uniformizer() (mclf.padic_extensions.fake_padic_com_letions.FakepAdicCompletion
    method),65 zeta_function()(mclf.curves.smooth_projective_curves.SmoothProje
union() (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkoviql\hib(), 12
    method),43
union_of_affinoid_trees() (in module
    mclf.berkovich.affinoid_domain),48
UnionOfDomains (class in
    mclf.berkovich.affinoid_domain), 46
upper_components()
    (mclf.semistable_reduction.reduction_trees.InertialComponent
    method), }8
upper_components()
    (mclf.semistable_reduction.reduction_trees.LowerComponent
    method), }8
upper_jumps() (mclf.padic_extensions.weak_padic_galois_extensions.WeakPadicGaloisExtension
    method),72
```

