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Smooth projective curves over a field.

Let \(k\) be a field and \(F/k\) a finitely generated field extension of transcendence
degree one (i.e. a ‘function field over \(k\)’). Then there exists a smooth projective
curve \(X\) over \(Spec(k)\) with function field \(F\), unique up to unique isomorphism.
The set of closed points on \(X\) are in natural bijection with the set of discrete
valuations on \(F\) which are trivial on \(k\). See


	
	Hartshorne, Algebraic Geometry, Theorem I.6.9.








The classes in this module provide the definition and some basic functionality for
such curves.

A curve \(X\) is defined via its function field \(F_X\). Points are represented by
the corresponding valuations on \(F_X\), and no smooth projective model of \(X\) is
actually computed. However, we do compute a list of ‘coordinate functions’
\(x_1,..,x_n\) which separate all points, meaning that the closure of the rational
map from \(X\) to projective space of dimension \(n\) is injective. Then a (closed)
point \(x\) on \(X\) can also be represented by the tupel \((f_1(x),..,f_n(x))\). This
is useful to test for equality of points.

A function field in Sage is always realized as a simple separable extension of a
rational function field. Geometrically, this means that the curve \(X\) is implicitly
equipped with a finite separable morphism \(\phi:X\to\mathbb{P}^1_k\)
to the projective line over the base field \(k\).

The base field \(k\) is called the constant base field of the curve, and it is
part of the data. We do not assume that the extension \(F_X/k\) is regular (i.e.
that \(k\) is algebraically closed in \(F_X\)). Geometrically this means that the
curve \(X\) may not be absolutely irreducibel as a \(k\)-scheme. The field of
constants of \(X\) is defined as the algebraic closure of \(k\) inside \(F_X\).
It is a finite extension \(k_c/k\). If we regard \(X\) as a curve over its fields of
constants then it becomes absolute irreducible.

It would be interesting to have an efficient algorithm for computing the field
of constants, but it seems that this has not been implemented in Sage yet.
To compute the genus of \(X\) it is necessary to know at least the degree \([k_c:k]\).
If \(k\) is a finite field, it is actually easy to compute \(k_c\). If \(k\) is a
number field we use a probabilistic algorithm for computing the degree \([k_c:k]\),
by reducing the curve modulo several small primes.

Currently, the function field \(F\) defining a smooth projective curve must be a
simple finite extension of a rational function field, i.e. of the form


\[F = k(x)[y]/(G)\]

where \(G\) is an irreducible polynomial over \(k(x)\). If not explicitly stated
otherwise, it is assumed that \(k\) is the constant base field of the curve \(X\).
If \(k\) is a finite field, then one may also declare any subfield \(k_0\) of \(k\)
to be the constant base field. Geometrically, this means that we consider \(X\)
as a curve over \({\rm Spec}(k_0)\). In any case, the field of constants of \(X\)
is a finite extension of \(k\).

AUTHORS:


	Stefan Wewers (2016-11-11): initial version




EXAMPLES:

sage: from mclf import *
sage: K = GF(2)
sage: FX.<x> = FunctionField(K)
sage: R.<T> = FX[]
sage: FY.<y> = FX.extension(T^2+x^2*T+x^5+x^3)
sage: Y = SmoothProjectiveCurve(FY)
sage: Y
the smooth projective curve with Function field in y defined by y^2 + x^2*y + x^5 + x^3
sage: Y.genus()
1
sage: Y.zeta_function()
(2*T^2 + T + 1)/(2*T^2 - 3*T + 1)





Over finite fields, we are allowed to specify the constant base field:

sage: K = GF(4)
sage: F.<x> = FunctionField(K)
sage: X = SmoothProjectiveCurve(F, k=GF(2))
sage: X
the smooth projective curve with Rational function field in x over Finite Field in z2 of size 2^2 and constant base field Finite Field of size 2
sage: X.field_of_constants()
Finite Field in z2 of size 2^2





A curve may also be defined by an irreducible bivariate polynomial:

sage: A.<x,y> = QQ[]
sage: X = SmoothProjectiveCurve(y^2 - x^3 - 1)
sage: X
the smooth projective curve with Function field in y defined by y^2 - x^3 - 1





If the curve is defined over a number field, we can find a prime of good
reduction, and compute the reduction:

sage: v_p = X.prime_of_good_reduction()
sage: v_p
5-adic valuation





The result is a discrete (p-adic) valuation on the constant base field. The
reduction is a smooth projective curve of the same genus:

sage: Xb = X.good_reduction(v_p)
sage: Xb
the smooth projective curve with Function field in y defined by y^2 + 4*x^3 + 4
sage: Xb.genus()
1






Todo


	allow to specify the constant base field in a more flexible way


	write more doctests !!


	implement a general and deterministic algorithm for computing the field of
constants (and not just the degree)


	the residue field of a point should be explicitly an extension of
the constant base field.


	treat the base curve \(X\) as a curve, not just as a function field


	realize morphisms between curves, in particular the canonical map to \(X\)







	
class mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve(X, v)

	Bases: SageObject

A closed point on a smooth projective curve.

A point on a curve \(X\) is identified with the corresponding
valuation \(v_x\) on the function field \(F\) of \(X\).

Alternatively, a point \(x\) on \(X\) can be represented by the vector


\[[v_x(f_1),\ldots, v_x(f_n)]\]

where \(f_1,\ldots,f_n\) is a list of coordinate functions, i.e. rational
functions which define an injective map from \(X\) into
\(\mathbb{P}^1\times\ldots\times\mathbb{P}^1\).

We use the latter representation to check for equality of points.


	
absolute_degree()

	Return the absolute degree of self.

The absolute degree of a point \(x\) on a curve \(X\) over \(k\) is the
degree of the extension \(k(x)/k\).

Here \(k\) is the constant base field of the curve, which may not be equal to
the field of constants.






	
coordinates()

	Return the coordinate tupel of the point.

NOTE:

for a curve over a number field and for a point whose residue field
is of high degree, this can be very slow.
It would be better to implement this function in a lazy way,
for instance as an iterator.






	
curve()

	Return the underlying curve of the point.






	
degree()

	Return the degree of self.

The degree of a point \(x\) on a curve \(X\) over \(k\) is the degree of the
residue field \(k(x)\) as an extension of the field of constants of \(X\).
The latter may be a proper extension of the base field \(k\)!






	
is_equal(P)

	Check whether this point is equal to P.

INPUT:


	P – a point on the curve underlying this point




OUTPUT:

True is \(P\) is equal to self, False otherwise.

Currently, the check for equality is done using the ‘coordinates’ of the
points. This may be very slow. It would probably be better to test the
equality of the underlying valuations. But here we can’t rely on Sage,
so this would require a hack.

EXAMPLES:

sage: import mclf.curves.smooth_projective_curves
sage: from mclf.curves.smooth_projective_curves import SmoothProjectiveCurve
sage: F0.<x> = FunctionField(GF(3))
sage: R.<y> = F0[]
sage: F.<y> = F0.extension(y^2 - (x+1)*x^2)
sage: Y = SmoothProjectiveCurve(F)
sage: v0 = F0.valuation(x)
sage: fiber = Y.fiber(v0)
sage: fiber[0].is_equal(fiber[1])
False










	
order(f)

	Return the order of the function in the point.

This is the same as self.valuation()(f).






	
residue_field()

	Return the residue field of the point.






	
valuation()

	Return the valuation corresponding to the point.






	
value(f)

	Return the value of the function f in the point.

If f has a pole then Infinity is returned.










	
class mclf.curves.smooth_projective_curves.SmoothProjectiveCurve(F, k=None, assume_regular=False)

	Bases: SageObject

Return the smooth projective curve with function field \(F\).

INPUT:


	F – a function field, or an irreducible  bivariate polynomial over a field


	k – a field which has a natural embedding into the constant
base field of \(F\), such that the constant base field is a finite
extension of k (or None).


	assume_regular – a boolean (default: False)




OUTPUT:

the smooth projective curve \(X\) with function field \(F\). If \(F\) is an
irreducible bivariate polynomial, we use the function field with two
generators and relation \(F\).

If \(k\) is given, then \(X\) is considered as a \(k\)-scheme. If \(k\) is not given
then we use the field of constants of \(F\) instead.

NOTE:

At the moment, \(k\) should only be different from the constant base field of
\(F\) if \(k\) is finite (because it is then easy to compute the degree of the
degree of the constant base field of \(F\) over \(k\)).


	
compute_separable_model()

	Compute a separable model of the curve (if necessary).

OUTPUT: None

This function only has to be called only once. It then decides whether
or not the function field of the curve is given as a separable extension
of the base field or not. If it is not separable then we compute a
separable model, which is a tripel \((Y_1,\phi, q)\) where


	\(Y_1\) is a smooth projective curve over the same constant base field
\(k\) as the curve \(Y\) itself, and which is given by a separable extension,


	\(\phi\) is a field homomorphism from the function field of \(Y_1\) into
the function field of \(Y\) corresponding to a purely inseparable extension,


	\(q\) is the degree of the extension given by \(\phi\), i.e. the degree of
inseparability of the map \(Y\to Y_1\) given by \(\phi\).
Note that \(q\) is a power of the characteristic of \(k\).









	
constant_base_field()

	Return the constant base field.






	
coordinate_functions()

	Return a list of coordinate functions.

By ‘list of coordinate functions’ we mean elements \(f_i\) in
the function field, such that the map


\[x \mapsto (f_1(x),\ldots, f_n(x))\]

from \(X\) to \((\mathbb{P}^1)^n\) is injective.

Note that this map may not be an embedding, i.e. image of this map may
not be a smooth model of the curve.






	
count_points(d)

	Return number of points of degree less or equal to d.

INPUT:


	d – an interger \(\geq 1\)




OUTPUT:

a list N, where N[i] is the number of points on self
of absolute degree \(i\), for \(i=1,..,d\).

Recall that the absolute degree of a point is the degree of
the residue field of the point over the constant base field
(not over the field of constants).

This is a very slow realization and should be improved at some point.






	
covering_degree()

	Return the degree of this curve as a covering of the projective line.






	
degree(D)

	Return the degree of the divisor D.

Note that the degree of \(D\) is defined relative to the
field of constants of the curve.






	
degree_of_inseparability()

	Return the degree of inseparability of this curve.

OUTPUT: positive integer, which is a power of the characteristic of the
function field of this curve.






	
divisor_of_poles(f)

	Return the divisor of poles of f.






	
divisor_of_zeroes(f)

	Return the divisor of zeroes of f.






	
fiber(v0)

	Return the set of points lying above a point on the projective line.

INPUT:


	v0 – a function field valuation on the rational function field




OUTPUT:

a list containing the points on this curve \(Y\) corresponding to extensions
of v0 to the function field of \(Y\).






	
field_of_constants()

	Return the field of constants of this curve.

If \(F\) is the function field of the curve and \(k\) the constant base field,
then the field of constants is the algebraic closure of \(k\) in \(F\).

For the moment, this is implemented only if the constant base field
is a finite field.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(GF(2))
sage: R.<y> = F[]
sage: G = (y+x)^4 + (y + x) + 1
sage: F1.<y> = F.extension(G)
sage: Y1 = SmoothProjectiveCurve(F1)
sage: Y1.field_of_constants()
Finite Field in z4 of size 2^4










	
field_of_constants_degree()

	Return the degree of the field of constants over the constant base field.

If \(F\) is the function field of the curve and \(k\) the constant base field,
then the field of constants \(k_c\) is the algebraic closure of \(k\) in \(F\).

If \(k\) is a finite field then we actually compute the field of constants,
and the result is provably correct. If \(k\) is a number field, then we use
a heuristic method: we find at least \(10\) different primes of \(k\) for which
the reduction of the defining equation remains irreducible, and then we
apply the method for finite fields to the reduced equation. The result
is very likely the true degree of the field of constants, and if the
result is equal to \(1\) then it is provably correct.

EXAMPLES:

sage: from mclf import *
sage: k = GF(2^3)
sage: F.<x> = FunctionField(k)
sage: R.<y> = F[]
sage: G = (y+x)^4 + (y+x) + 1
sage: F1.<y> = F.extension(G)
sage: Y1 = SmoothProjectiveCurve(F1, GF(2))
sage: Y1.field_of_constants_degree()
12
sage: F.<x> = FunctionField(QQ)
sage: R.<y> = F[]
sage: G = y^4 + x*y + 1
sage: F2.<y> = F.extension(G)
sage: Y2 = SmoothProjectiveCurve(F2)
sage: Y2.field_of_constants_degree()
1
sage: R.<y> = F[]
sage: G = (y+x)^3 + (y+x) + 1
sage: F3.<y> = F.extension(G)
sage: Y3 = SmoothProjectiveCurve(F3)
sage: Y3.field_of_constants_degree()
3
sage: Y3.genus()
0






Todo


	implement a deterministic algorithm for number fields











	
function_field()

	Return the function field of the curve self.






	
genus(use_reduction=True)

	Return the genus of the curve.

INPUT:


	use_reduction – a boolean (default: True)




OUTPUT: the genus of this curve.

The genus of the curve is defined as the dimension of
the cohomology group \(H^1(X,\mathcal{O}_X)\), as a vector space
over the field of constants `k_c`.

The genus \(g\) of the curve \(X\) is computed using the Riemann-Hurwitz
formula, applied to the cover \(X\to\mathbb{P}^1\) corresponding to the
underlying realization of the function field of \(X\) as a finite
separable extension of a rational function field. See:


	Hartshorne, Algebraic Geometry, Corollary IV.2.4




If the constant base field is finite, we compute the degree of the
‘ramification divisor’. If it is not, we assume that the characteristic
is zero, and we use the ‘tame’ Riemann Hurwitz Formula.

If the curve is defined over a number field, and use_reduction is
True (the default) then the genus of a reduction of this curve to
some prime of good reduction is computed. This may be consderably
faster.

EXAMPLES:

sage: from mclf import *
sage: F0.<x> = FunctionField(GF(2))
sage: R.<T> = F0[]
sage: G = T^2 + T + x^3 + x + 1
sage: F.<y> = F0.extension(G)
sage: Y = SmoothProjectiveCurve(F)
sage: Y.genus()
1
sage: G = T^2 + x^3 + x + 1
sage: F.<y> = F0.extension(G)
sage: Y = SmoothProjectiveCurve(F)
sage: Y.genus()
0










	
good_reduction(v_p)

	Return the reduction of this curve at a prime of good reduction.

INPUT:


	v_p – a discrete valuation on the constant base field \(K\)




OUTPUT: the reduction of this curve with respect to \(v_p\), assuming
that this is again a smooth projective curve of the same genus.
Otherwise, an error is raised.

Note that we just reduce the plane equation for this curve with respect
to \(v_p\). This is a very naive notion of good reduction. If it works,
then the curve does indeed have good reduction at \(v_p\), and the result
is correct.






	
is_separable()

	Check whether this curve is represented as a separable cover of the projective line.






	
phi()

	Return the natural embedding of the function field of the separable
model into the function field of this curve.

OUTPUT: a field homomorphism






	
plane_equation()

	Return the plane equation of this curve.

OUTPUT:

A polynomial in two variables over the constant base field which defines
the plane model of this curve, where the first variable corresponds to
the base field F0.






	
point(v)

	Returns the point on the curve corresponding to v.

INPUT:


	v – a discrete valuation on the function field of the curve




OUTPUT:

The point on the curve corresponding to v. The valuation \(v\) must be
trivial on the constant base field.






	
points_with_coordinates(a)

	Return all points with given coordinates.

INPUT:


	a – a tupel of coordinates, of lenght \(n\), at most the
number of coordinate functions of the curve




OUTPUT:

a list containing all points on the curve whose first
\(n\) coordinate values agree with a.






	
potential_branch_divisor()

	Return list of valuations containing the branch locus.

OUTPUT:

A list of pairs \((v,d)', where \) runs over a list of valuations of the
base field \(F_0 = K(x)\) containing all the valuations corresponding to a
branch point of the cover of curves, and \(d\) is the degree of \(v\).






	
prime_of_good_reduction()

	Return a prime ideal where this curve has good reduction.

OUTPUT:

We assume that the constant base field \(K\) is a number field. We return
a discrete valuation \(v\) on \(K\) such that the following holds:


	all the coefficients of the plane equation \(G(x,y)=0\) of this curve
are \(v\)-integral


	the reduction of \(G\) to the residue field of \(v\) is irreducible and
defines a plane curve with the same genus as the original curve.




Note that this implies that \(v\) is inert in the field of constants of
the curve.

EXAMPLES:

sage: from mclf import *
sage: R.<T> = QQ[]
sage: K.<zeta> = NumberField(T^2+T+1)
sage: A.<x,y> = K[]
sage: X = SmoothProjectiveCurve(y^3 - y - x^2 + 1 + zeta)
sage: X.prime_of_good_reduction()
5-adic valuation
sage: X.good_reduction(_)
the smooth projective curve with Function field in y defined by y^3 + 4*y + 4*x^2 + u1 + 1










	
principal_divisor(f)

	Return the principal divisor of f.

INPUT:


	f – a nonzero element of the function field of self




OUTPUT:  the principal divisor \(D =(f)\). This is a list of pairs \((P, m)\),
where \(P\) is a point and \(m\) is an integer.






	
ramification_divisor()

	Return the ramification divisor of self.

OUTPUT:

The ramification divisor of the curve, if the curve is given by
a separable model. Otherwise, an error is raised.

So the function field of of the curve is a finite separable extension
of a rational function field. Geometrically, this means that
the curve \(X\) is represented as a separable cover of
the projective line. The ramification divisor of this cover
is supported in the set of ramification points of this cover.
Sheaf theoretically, the divisor represents the sheaf of relative
differentials. See:


	Hartshorne, Algebraic Geometry, Definition IV.2.









	
random_point()

	Return a random closed point on the curve.






	
rational_function_field()

	Return the rational function field underlying the function field of \(X\).

By definition, the function field \(F_X\) of the curve \(X\) is a finite
separable extension of a rational function field \(k(x)\), where \(k\) is
the base field of \(X\).






	
separable_model()

	Return the separable model of this curve.

OUTPUT: a smooth projective curve over the same constant base field

The separable model of this curve \(Y\) is a curve \(Y_s\) defined over the
same constant base field and whose defining equation realizes \(Y_s\)
as a finite separable cover of the projective line. It comes equipped
with a finite, purely inseparable morphism \(Y\to Y_s\). In particular,
\(Y_s\) has the same genus as \(Y\).

The inclusion of function fields \(\phi:F(Y_s)\to F(Y)\) can be accessed
via the method phi(), the degree of the extension \(Y/Y_s\) via the
method degree_of_inseparability.






	
singular_locus()

	Return the singular locus of the affine model of the curve.

OUTPUT:

a list of discrete valuations on the base field \(k(x)\) which represent
the \(x\)-coordinates of the points where the affine model of the curve
given by the defining equation of the function field may be singular.






	
structure_map()

	Return the canonical map from this curve to the projective line.






	
zeta_function(var_name='T')

	Return the Zeta function of the curve.

For any scheme \(X\) of finite type over \(\mathbb{Z}\), the arithmetic
zeta funtion of \(X\) is defined as the product


\[\zeta(X,s) := \prod_x \frac{1}{1-N(x)^{-s}},\]

where \(x\) runs over over all closed points of \(X\) and \(N(x)\)
denotes the cardinality of the residue field of \(x\).

If \(X\) is a smooth projective curve over a field with
\(q\) elements, then \(\zeta(X,s) = Z(X,q^{-s})\),
where \(Z(X,T)\) is a rational function in \(T\) of the form


\[Z(X,T) =  \frac{P(T)}{(1-T)(1-qT)},\]

for a polynomial \(P\) of degree \(2g\), with some extra properties
reflecting the Weil conjectures. See:


	Hartshorn, Algebraic Geometry, Appendix C, Section 1.




Note that that this makes only sense if the constant base
field of self is finite, and that \(Z(X,T)\) depends on the
choice of the constant base field (unlike the function
\(\zeta(X,s)\)!).










	
mclf.curves.smooth_projective_curves.absolute_degree(K)

	Return the absolute degree of a (finite) field.






	
mclf.curves.smooth_projective_curves.compute_value(v, f)

	Return the value of f at v.

INPUT:


	v – a function field valuation on \(F\)


	f – an element of \(F\)




OUTPUT: The value of f at the point corresponding to v.

This is either an element of the residue field of the valuation v
(which is a finite extension of the base field of \(F\)), or \(\infty\).






	
mclf.curves.smooth_projective_curves.e_f_of_valuation(v)

	Return the ramification index of this valuation.

INPUT:


	v – a function field valuation on an extension of a rational function field




OUTPUT: the ramification index of \(v\) over the base field






	
mclf.curves.smooth_projective_curves.extension_degree(K, L, check=False)

	Return the degree of the field extension.

INPUT:


	K, L – two fields, where K has a natural embedding into L


	check (default: False) – boolean




OUTPUT:

the degree \([L:K]\)

At the moment, this works correctly only if \(K\) and \(L\) are
finite extensions of a common base field. It is not checked
whether \(K\) really maps to \(L\).






	
mclf.curves.smooth_projective_curves.extension_of_finite_field(K, n)

	Return a field extension of this finite field of degree n.

INPUT:


	K – a finite field


	n – a positive integer




OUTPUT: a field extension of \(K\) of degree \(n\).

This function is useful if \(K\) is constructed as an explicit extension
\(K = K_0[x]/(f)\); then K.extension(n) is not implemented.


Note

This function should be removed once trac.sagemath.org/ticket/26103
has been merged.








	
mclf.curves.smooth_projective_curves.field_of_constant_degree_of_polynomial(G, return_field=False)

	Return the degree of the field of constants of a polynomial.

INPUT:


	G – an irreducible monic polynomial over a rational function field


	return_field – a boolean (default:\(False\))




OUTPUT: the degree of the field of constants of the function field defined
by G. If return_field is True then the actual field of constants
is returned. This is currently implemented for finite fields only.

This is a helper function for SmoothProjectiveCurve.field_of_constants_degree.






	
mclf.curves.smooth_projective_curves.make_finite_field(k)

	Return the finite field isomorphic to this field.

INPUT:


	k – a finite field




OUTPUT: a triple \((k_1,\phi,\psi)\) where \(k_1\) is a ‘true’ finite field,
\(\phi\) is an isomorphism from \(k\) to \(k_1\) and \(\psi\) is the inverse of \(\phi\).

This function is useful when \(k\) is constructed as a tower of extensions
with a finite field as a base field.


Note

This function should be removed once trac.sagemath.org/ticket/26103
has been merged.








	
mclf.curves.smooth_projective_curves.separate_points(coordinate_functions, valuations)

	Add new coordinate functions to separate a given number of points.

INPUT:


	coordinate_functions – a list of elements of a function field \(F\)


	valuations – a list of function field valuations on \(F\)




OUTPUT: enlarges the list coordinate_functions in such a way
that the lists [value(v,x) for x in coordinate_functions],
where v runs through valuations, are pairwise distinct.






	
mclf.curves.smooth_projective_curves.separate_two_points(v1, v2)

	Return a rational function which separates two points

INPUT:


	v1, v2 – discrete, nonequivalent  valuations on a common function field \(F\)




OUTPUT:

An element \(f\) of \(F\) which takes distinct values at the two points corresponding
to v1 and v2.






	
mclf.curves.smooth_projective_curves.sum_of_divisors(D1, D2)

	Return the sum of the divisors D1 and D2.

INPUT:


	D1, D2: divisors on the same curve \(X\)




OUTPUT:

\(D_1\) is replaced by the sum \(D_1+D_2\) (note that this changes \(D_1\)!).

Here a divisor \(D\) is given by a dictionary with entries (a:(P,m)),
where a is a coordinate tupel, P is a point on \(X\) with coordinates
a and m is the multiplicity of P in \(D\).









          

      

      

    

  

    
      
          
            
  
Morphisms of smooth projective curves

This module defines a class MorphismOfSmoothProjectiveCurves which realizes
finite and nonconstant morphism between smooth projective curves.

Let \(Y\) and \(X\) be smooth projective curves, with function fields \(F_Y\) and \(F_X\),
respectively. Then a nonconstant morphism


\[f:Y\to X\]

is completely determined by the induced pullback map on the function fields,


\[\phi = f^*:F_X \to F_Y.\]

It is automatic that \(F_Y\) is a finite extension of \(\phi(F_X)\) and that
the morphism \(\phi:Y\to X\) is finite.


Note

For the time being, this module is in a very preliminary state. A morphism
\(\phi:Y\to X\) as above can be constructed only in the following two special
cases:


	\(X\) and \(Y\) are two projective lines; then \(F_X\) and \(F_Y\) are rational
function fields in one variable.


	the map \(f:Y\to X\) is the structure map of the curve \(Y\); by this we
mean that \(X\) is the projective line \(f\) the canonical morphism realizing
\(Y\) as a cover of \(X\).




Moreover, the role of the constant base fields of the two curves still needs
to be clarified.
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EXAMPLES:

sage: from mclf import *
sage: FX.<x> = FunctionField(QQ)
sage: R.<y> = FX[]
sage: FY.<y> = FX.extension(y^2-x^3-1)
sage: X = SmoothProjectiveCurve(FX)
sage: Y = SmoothProjectiveCurve(FY)
sage: phi = MorphismOfSmoothProjectiveCurves(Y, X)
sage: phi
morphism from the smooth projective curve with Function field in y defined by y^2 - x^3 - 1
to the smooth projective curve with Rational function field in x over Rational Field,
determined by Coercion map:
  From: Rational function field in x over Rational Field
  To:   Function field in y defined by y^2 - x^3 - 1

sage: x0 = PointOnSmoothProjectiveCurve(X, FX.valuation(x-1))
sage: phi.fiber(x0)
[Point on the smooth projective curve with Function field in y defined by y^2 - x^3 - 1 with coordinates (1, u1).]






	
class mclf.curves.morphisms_of_smooth_projective_curves.MorphismOfSmoothProjectiveCurves(Y, X, phi=None)

	Bases: SageObject

Return the morphism between two smooth projective curves corresponding
to a given morphism of function fields.

INPUT:


	Y, X – two smooth projective curves


	phi – a morphism from the function field of \(X\) into the function
field of \(Y\), or None (default: None)




OUTPUT: the morphism \(f:Y\to X\) corresponding to the given morphism of
function fields.

If no morphism of function fields is given then it is assumed that the
function field of \(X\) is the canonical rational subfield of the function
field of \(Y\). This means that map \(f:Y\to X\) is the structure map of \(Y\) as
a cover of the projective line. If this is not the case then an error
is raised.


Note

At the moment only the following two special cases are implemented:


	the map \(Y\to X\) is equal to the structural morphism of \(Y\) as a cover
of the projective line; in particular, \(X\) is a projective line


	\(X\) and \(Y\) are both projective lines






EXAMPLES:

We define a rational map between two projective lines and compute the
fiber of a point on the target:

sage: from mclf import *
sage: FX.<x> = FunctionField(QQ)
sage: FY.<y> = FunctionField(QQ)
sage: X = SmoothProjectiveCurve(FX)
sage: Y = SmoothProjectiveCurve(FY)
sage: phi = FY.hom(x^2+1)
sage: psi = MorphismOfSmoothProjectiveCurves(X, Y, phi)
sage: psi
morphism from the smooth projective curve with Rational function field in x over Rational Field
to the smooth projective curve with Rational function field in y over Rational Field,
determined by Function Field morphism:
From: Rational function field in y over Rational Field
To:   Rational function field in x over Rational Field
Defn: y |--> x^2 + 1

sage: P = PointOnSmoothProjectiveCurve(Y, FY.valuation(y-2))
sage: psi.fiber(P)
[Point on the smooth projective curve with Rational function field in x over Rational Field with coordinates (1,).,
 Point on the smooth projective curve with Rational function field in x over Rational Field with coordinates (-1,).]





The only other map that is allowed is the structure morphism of a curve
as a cover of the projective line:

sage: R.<x> = GF(2)[]
sage: Y = SuperellipticCurve(x^4+x+1, 3)
sage: phi = Y.structure_map()
sage: X = phi.codomain()
sage: X
the smooth projective curve with Rational function field in x over Finite Field of size 2
sage: P = X.random_point()
sage: phi.fiber(P)  # random
[Point on superelliptic curve y^3 = x^4 + x + 1 over Finite Field of size 2 with coordinates (0, 1).,
 Point on superelliptic curve y^3 = x^4 + x + 1 over Finite Field of size 2 with coordinates (0, u1).]






	
codomain()

	Return the codomain of this morphism.






	
domain()

	Return the domain of this morphism.






	
fiber(P)

	Return the fiber of this map over the point \(P\) (without multiplicities).

INPUT:


	P – a point on the curve \(X\), the codomain of this morphism




OUTPUT: the fiber over \(P\), as a list of points of \(Y\) (the domain of this map)






	
fiber_degree(P)

	Return the (absolute) degree of the fiber of this map over the point P.

INPUT:


	P – a point on the curve \(X\) (the codomain of this morphism)




OUTPUT: the fiber degree over \(P\), the sum of the degrees of the
points on \(Y\) (the domain of this morphism) lying above \(P\). Here
degree means absolute degree, i.e. with respect to the
constant base field of \(Y\) (which may differ from the field of constants).






	
is_structure_map()

	Return True if this map is the structure map of the curve \(Y\).

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = SmoothProjectiveCurve(F)
sage: phi = F.hom(x^2+1)
sage: f = MorphismOfSmoothProjectiveCurves(X, X, phi)
sage: f.is_structure_map()
False
sage: phi = F.hom(x)
sage: f = MorphismOfSmoothProjectiveCurves(X, X, phi)
sage: f.is_structure_map()
True










	
pullback(f)

	Return the pullback of a function under this morphism.






	
pullback_map()

	Return the induced inclusion of function fields.













          

      

      

    

  

    
      
          
            
  
Superelliptic curves

A superelliptic curve is a smooth projective curve over a field \(K\) which
is given generically by an equation of the form


\[Y:\; y^n = f(x),\]

where \(n\geq 2\) and \(f\in K[x]\) is  a polynomial over \(K\), of degree at least
\(2\) (and of degree at least \(3\) if \(n=2\)). Let


\[f = c\cdot \prod_i f_i^{m_i}\]

be the prime factorization of \(f\) (where \(c\in K^\times\) and the \(f_i\) are monic,
irreducible and pairwise distinct). We assume that the gcd of the \(m_i\) is prime
to \(n\). This means that the defining equation is irreducible and the curve
\(Y\) can be considered as a Kummer cover of \(X=\mathbb{P}^1_K\) of degree \(n\).

In this module we define a class SuperellipticCurve which is a subclasses
of SmoothProjectiveCurve and whose objects represent superelliptic curves
as above.
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EXAMPLES:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^4-1, 3)
sage: Y
superelliptic curve y^3 = x^4 - 1 over Rational Field
sage: Y.genus()
3
sage: Y.kummer_gen()
y
sage: Y.polynomial()
x^4 - 1
sage: Y.covering_degree()
3






Todo


	override those methods of SmoothProjectiveCurve where we have a
faster algorithm in the superelliptic cases







	
class mclf.curves.superelliptic_curves.SuperellipticCurve(f, n, name='y')

	Bases: mclf.curves.smooth_projective_curves.SmoothProjectiveCurve

Return the superelliptic curve with equation \(y^n=f(x)\).

INPUT:


	f – a nonconstant polynomial over a field \(K\)


	n – an integer \(\geq 2\)


	name – a string (default ‘y’)




OUTPUT:

the smooth projective curve \(Y\) over \(K\) given generically by the equation


\[Y:\; y^n = f(x).\]

This means that the function field of \(Y\) is an extension of the rational
function field in \(x\) generated by an element \(y\) (the Kummer generator)
satisfying the above equation.

It is assumed that the gcd of the multiplicities of the irreducible factors
of \(f\) is prime to \(n\). Thus, the curve \(Y\) is a cover of \(\mathbb{P}^1_K\)
of degree \(n\). If this condition is not met, an error is raised. name is
the name given to the Kummer generator \(y\).


	
covering_degree()

	Return the covering degree.

If the curve is given by the equation \(y^n =f(x)\) then the covering degree
degree is \(n\).






	
kummer_gen()

	Return the Kummer generator of this superelliptic curve.

If the curve is given by the equation \(y^n =f(x)\) then the Kummer
generator is the element \(y\) of the the function field.






	
polynomial()

	Return the polynomial defining this curve.

If the curve is given by the equation \(y^n =f(x)\) then \(f\) is this
polynomial.













          

      

      

    

  

    
      
          
            
  
The Berkovich line



	The Berkovich line over a discretely valued field

	Finite subtrees of the Berkovich line

	Points of type V on the Berkovich line.

	Affinoid subdomains of the Berkovich line.

	Piecewise affine functions on the Berkovich projective line.









          

      

      

    

  

    
      
          
            
  
The Berkovich line over a discretely valued field

Let \(K\) be a field and \(v_K\) a discrete valuation on \(K\). Let \(F=K(x)\)
be a rational function field over \(K\). We consider \(F\) as the function
field of the projective line \(\mathbb{P}_K^1\) over \(K\). Let \(X\) denote the
\((K,v_K)\)-analytic space associated to \(\mathbb{P}_K^1\). We call \(X\) the
Berkovich line with respect to \(v_K\).

Note that we do not assume \(K\) to be complete with respect to \(v_K\). This allows
us to work with ‘exact’ fields, e.g. number fields. As the ‘official’ definition
of \(K\)-analytic spaces requires \(K\) to be complete, \(X\) is really defined over
the completion \(\hat{K}\) with respect to \(v_K\). We do have a continous map


\[\pi: X \to \mathbb{P}_K^1\]

whose role we discuss below.

We systematically work with additive pseudo-valuations instead of multiplicative
seminorms. Thus, we identitfy a point \(\xi\in X\) with a (real valued)
pseudo-valuation \(v_{\xi}\) on \(F\) extending \(v_K\),


\[v_{\xi}:F \to \mathbb{R}\cup\{\pm \infty\},\]

as follows: the subring


\[\mathcal{O}_\xi := \{ f\in F \mid v_{\xi}(f) > -\infty \}\]

is a local subring of \(F\), with maximal ideal


\[\mathfrak{m}_\xi := \{ f \in F \mid v_\xi(f) = \infty \}.\]

Then \(v_\xi\) induces a discrete valuation on the residue field


\[K(\xi) := \mathcal{O}_\xi/\mathfrak{m}_\xi.\]

There are only two kind of points which are relevant for us and which we can
represent and compute with:


	points of type I, which are moreover algebraic: these are the points
\(\xi\in X\) such that \(\bar{\xi}:=\pi(\xi)\) is a closed point on \(\mathbb{P}^1_K\).
Then \(\mathcal{O}_\xi\) is the local ring and \(K(\xi)\) the residue field of \(\bar{\xi}\).
Since \(K(\xi)/K\) is a finite field extension, there are finitely many extensions
of \(v_K\) to a discrete valuation on \(K(\xi)\); the point \(\xi\in\pi^{-1}(\bar{\xi})\)
corresponds precisely to the valuation induces by \(v_\xi\).


	points of type II: these are the points \(\xi\) such that \(v_\xi\) is a discrete
valuation on \(F\). In particular, the local ring \(\mathcal{O}_\xi\) is equal to
\(F\) and the image \(\bar{\xi}:=\pi(\xi)\) is the generic point of \(\mathbb{P}^1_K\).
A we see below, a point \(\xi\) of type II corresponds to a discoid, a certain
type of affinoid subdomain of \(X\).




Our choice of the generator \(x\) of the function field \(F\), which we keep fixed
throughout, yields certain distinguished subsets and points of \(X\), as follows.

The unit disk is the subset


\[\mathbb{D} := \{ \xi\in X \mid v_\xi(x)\geq 0 \}.\]

Note that a point \(\xi\in\mathbb{D}\) is uniquely determined by the restriction
of \(v_\xi\) to the polynomial ring \(K[x]\).

The Gauss point is the point
\(\xi^g\in\mathbb{D}\) of type II corresponding to the Gauss valuation on \(K[x]\),
with respect to \(v_K\), i.e. by


\[v_{\xi^g}(\sum_i a_i x^i) = \min_i v_K(a_i).\]

The second distinguished is the point at infinity, denoted \(\infty\in X\).
It is the unique point of type I such that \(\pi(\infty)\) is the ‘usual’ point at
infinity on the projective line, with respect to the parameter \(x\). It is
characterized by the condition


\[v_{\infty}(\frac{1}{x}) = \infty.\]

By a result of Berkovich, the topological space \(X\) is a simply connected
quasi-polyhedron. Among other things this means that for any two points
\(\xi_1,\xi_2\in X\) there exists a unique closed subset


\[[\xi_1,\xi_2]\subset X\]

which is homeomorphic to the unit interval \([0,1]\subset\mathbb{R}\) in such a
way that \(\xi_1,\xi_2\) are mapped to the endpoints \(0,1\). It follows that \(X\)
has a unique partial ordering determined by the following two conditions:


	the Gauss point \(\xi^g\) is the smallest element


	we have \(\xi_1<\xi_2\) if and only if \(\xi_2\) lies in a connected component
of \(X-\{\xi_1\}\) which does not contain \(\xi^g\).




A point \(\xi\) of type II has a discoid representation as follows. If
\(\xi=\xi^g\) then \(D_{\xi^g}:=\mathbb{D}\) is defined as the unit disk. Otherwise,
\(D_\xi\) is defined of the set of all points \(\xi_1\in X\) such that
\(\xi\leq\xi_1\). One can show that \(D_\xi\) is then of the form


\[D_\xi = \{ \xi_1 \mid v_{\xi_1}(f) \geq s\},\]

where \(f\) is a polynomial in \(x\), irreducible over \(\hat{K}\) (or \(f= 1/x\) if
\(\infty\in D_\xi\)) and \(s\) is a rational number. The pair \((f,s)\) determines
\(\xi\), but this representation is not unique. We call \((f, s)\) a
discoid representation of \(\xi\).

Conversely, if \(D\subset X\) is a discoid, i.e. an irreducible affinoid
subdomain which becomes a union of closed disks over a finite extension of \(K\),
then there exists a unique boundary point \(\xi\) of \(D\). We have \(D=D_\xi\) if
and only if \(D\) is a standard discoid, i.e. it is either contained in or
disjoint from the unit disk.

Note that we can simply extend the discoid representation to points of
type I by allowing \(s\) to take the value \(\infty\). Then \(D_\xi = \{\xi\}\)
for a point \(\xi\) of type I.
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EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: X
Berkovich line with function field Rational function field in x over Rational Field with 2-adic valuation





We define a point of type II via its discoid.:

sage: xi1 = X.point_from_discoid(x^3 + 2, 3)
sage: xi1
Point of type II on Berkovich line, corresponding to v(x^3 + 2) >= 3





If the affinoid \(v(f)\geq s\) is not irreducible, an error is raised.:

sage: X.point_from_discoid(x^2-1, 2)
Traceback (most recent call last):
...
AssertionError: D defined by f=x^2 - 1 and s=2 is not a discoid





We can similarly define points which do not lie on the unit disk.:

sage: xi2 = X.point_from_discoid(4*x+1, 1)
sage: xi2
Point of type II on Berkovich line, corresponding to v(4*x + 1) >= 1





The infimum of a point inside and a point outside the unit disk must be the
Gauss point, corresponding to the unit disk.:

sage: xi1.infimum(xi2)
Point of type II on Berkovich line, corresponding to v(x) >= 0
sage: X.gauss_point()
Point of type II on Berkovich line, corresponding to v(x) >= 0





Some points of type I are limit points, i.e. they can only be approximated
by points of type II. For instance, the zeroes of a polynomial which is
irreducible over the ground field \(\mathbb{Q}\), but not over its completion
\(\mathbb{Q}_2\).:

sage: f = 2*x^2 + x + 1
sage: f.factor()
(2) * (x^2 + 1/2*x + 1/2)

sage: D = X.divisor(f)
sage: D
[(Point of type I on Berkovich space approximated by v(2*x + 1) >= 1, with equation 4*x^2 + 2*x + 2 = 0,
  1),
 (Point of type I on Berkovich space approximated by v(x + 1) >= 1, with equation 4*x^2 + 2*x + 2 = 0,
  1),
 (The point at infinity on the Berkovich line, -2)]
sage: xi = D[0][0]
sage: xi.equation()
4*x^2 + 2*x + 2





Note that the point \(\xi\) lies outside and its Galois conjugate point lies inside
of the unit disk. This shows that issue #39 has been fixed.

TO DO:


	more doctests!





	
class mclf.berkovich.berkovich_line.BerkovichLine(F, vK)

	Bases: SageObject

The class of a Berkovich projective line over a discretely valued field.

Let \(K\) be a field and \(v_K\) a discrete valuation on \(K\). Let \(F=K(x)\)
be a rational function field over \(K\). We consider \(F\) a the function
field of the projective line \(X\) over \(K\). Let \(X\) denote the
\((K,v_K)\)-analytic space associated to \(X\). Then a point \(\xi\) on \(X\)
may be identified with a (real valued) pseudo-valuation \(v_\xi\) on \(F\)
extending \(v_K\).

INPUT:


	F – a rational function field over a base field K


	vK – a discrete valuation on the base field K





	
find_zero(xi1, xi2, f)

	Return the point between xi1 and xi2 where f has valuation \(0\).

INPUT:


	xi1, xi2 – points on the Berkovich line such that \(\xi_1<\xi2\)


	
	f – a nonconstant rational function; it is assumed that the signs

	of the valuations of f at \(\xi1\) and \(\xi2\) are different









OUTPUT:

The smallest point between \(\xi1\) and \(\xi2\) where the valuation of \(f\)
is zero.

NOTE:

We are assuming for the moment that the function


\[v \mapsto v(f)\]

is affine (i.e. has no kinks) on the interval \([\xi_1,\xi_2]\).

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: xi1 = X.gauss_point()
sage: xi2 = X.point_from_discoid(x^4+2*x^2+2, 10)
sage: X.find_zero(xi1, xi2, (x^4+2*x^2+2)/4)
Point of type II on Berkovich line, corresponding to v(x^4 + 2*x^2 + 2) >= 2

sage: xi3 = X.point_from_discoid(4*x^4+2*x^2+1, 10)
sage: f = 2*x^3
sage: xi1.v(f), xi3.v(f)
(1, -1/2)
sage: X.find_zero(xi1, xi3, f)
Point of type II on Berkovich line, corresponding to v(1/x) >= 1/3






Todo

Remove the assumption on the kinks.








	
gauss_point()

	Return the Gauss point of self.

The Gauss point is the type-II-point corresponding to the Gauss
valuation on \(K[x]\). Its discoid is the unit disk.

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: X.gauss_point()
Point of type II on Berkovich line, corresponding to v(x) >= 0










	
infty()

	Return the point \(\infty\).

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: X.infty()
The point at infinity on the Berkovich line










	
point_from_pseudovaluation(v)

	Return the point on the Berkovich line corresponding to the pseudovaluation v.

INPUT:


	
	v – a discrete pseudovaluation on the function field of self,

	extending the base valuation \(v_K\)









OUTPUT:

The point \(\xi\) on the Berkovich line \(X\) =``self`` corresponding to
the pseudo valuation v on the function field of \(X\).

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: v = F.valuation(x)
sage: X.point_from_pseudovaluation(v)
Traceback (most recent call last):
...
AssertionError: v is not an extension of the base valuation

sage: v = F.valuation(GaussValuation(F._ring, v_2))
sage: X.point_from_pseudovaluation(v)
Point of type II on Berkovich line, corresponding to v(x) >= 0










	
point_from_pseudovaluation_on_polynomial_ring(v0, parameter=None)

	Return the point corresponding to a pseudo-valuation on a polynomial ring.

INPUT:


	v0 – a discrete pseudo-valuation on a polynomial ring over the
base field \(K\), extending the base valuation \(v_K\)


	parameter – a parameter for the function field (default: None)




OUTPUT:

The point on this Berkovich line corresponding to v0, with respect
to parameter. If parameter is not given, we assume that it is
the standard parameter \(x\).

EXAMPLES:

sage: from mclf import *
sage: from sage.all import GaussValuation
sage: F.<x> = FunctionField(QQ)
sage: v2 = QQ.valuation(2)
sage: X = BerkovichLine(F, v2)
sage: v0 = GaussValuation(F._ring, v2)
sage: X.point_from_pseudovaluation_on_polynomial_ring(v0, 2*x)
Point of type II on Berkovich line, corresponding to v(x) >= 1










	
point_from_valuation(v)

	Return the point corresponding to a discrete valuation.

INPUT:


	v – a discrete valuation on the function field of this Berkovich line




OUPUT:

The point corresponding to v.

If the restriction of \(v\) to the constant base field is trivial, then
we obtain a point of type I. Otherwise, the restriction of \(v\) to \(K\)
must be equivalent to the base valuation \(v_K\), and in this case we
obtain a point of type II.

EXAMPLES:

sage: from mclf.berkovich.berkovich_line import BerkovichLine
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: v = F.valuation(x^2+1/2)
sage: X.point_from_valuation(v)
Point of type I on Berkovich line given by x^2 + 1/2 = 0
sage: xi = X.point_from_discoid(x, 1/2)
sage: xi1 = X.point_from_valuation(xi.valuation())
sage: xi.is_equal(xi1)
True














	
class mclf.berkovich.berkovich_line.PointOnBerkovichLine

	Bases: SageObject

A point on a Berkovich projective line.

We only allow two different types of points:


	
	Type I, algebraic: these are the points that come from a closed point

	on the (algebraic) projective line over the completed base field.







	
	Type II: these are the points which correspond to discrete valuations

	on the function field whose residue field is a function field over the
residue base field









In particular, the Gauss valuation on \(F=K(x)\) with respect to the parameter
\(x\) corresponds t a point \(\xi^g\) of type II on \(X\) which we call
the Gauss point.

The set \(X\) has a canonical partial ordering in which the Gauss point
is the smallest elements. All point of type I are maximal elements.


	
base_field()

	Return the base field of this Berkovich line.






	
base_valuation()

	Return the valuation on the base field of this Berkovich line.






	
berkovich_line()

	Return the Berkovich line of which this point lies.






	
function_field()

	Return the function field of this Berkovich line.






	
inverse_parameter()

	Return the inverse parameter of the polynomial ring on which self is defined.

Let \(\phi:F\to F\) be the automorphism of the function field \(F=K(x)\) such
that \(Y:=\phi(x)\) is the parameter used to define self.
Then the inverse parameter is \(z:=\phi^{-1}(x)\).

EXAMPLES:

sage: from mclf import *
sage: from sage.all import GaussValuation
sage: F.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(F, v_2)
sage: v0 = GaussValuation(F._ring, v_2)
sage: xi = X.point_from_pseudovaluation_on_polynomial_ring(v0, x/2)
sage: xi
Point of type II on Berkovich line, corresponding to v(1/x) >= 1
sage: xi.parameter()
1/x
sage: xi.inverse_parameter()
1/x





At the moment, only parameters y of the form c*x or 1/x are allowed.

sage: y = (2*x-1)/(x+2)
sage: xi = X.point_from_pseudovaluation_on_polynomial_ring(v0, y)
Traceback (most recent call last):
...
AssertionError: y must be c*x or 1/x










	
parameter()

	Return the parameter of the polynomial ring on which self is defined.

The point self corresponds to a discrete pseudo-valuation
\(v\) which is the extension of a pseudo-valuation \(v_0\) on \(K[y]\),
where \(y\) is the parameter in question.










	
class mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine(X, v)

	Bases: mclf.berkovich.berkovich_line.PointOnBerkovichLine

A point of type II on a Berkovich line.

INPUT:


	X – a Berkovich line over a valued field K


	v – a discrete valuation on the function field of X extending the base valuation




OUTPUT:

The type-II-point \(\xi\) on \(X\) corresponding to \(v\).

It is also possible to replace v by a pair (v0, y), where v0
is a discrete valuation on a polynomial ring \(K[x]\), and y is a parameter
for the function field of the Berkovich line. Then \(\xi\) is the point
corresponding to the valuation \(v\) on the function field \(F=K(x)\) which pulls
back to \(v_0\) via the inclusion \(K[x]\to F\) that sends \(x\) to \(y\).

NOTE:


At the moment, we only allow the generators \(y\) of the form \(cx\)
or \(1/x\).





	
approximation()

	Return an approximation of self.
For a point of type II, self is already an approximation of itself.






	
discoid(certified_point=None)

	Return a representation of the discoid of which this type II point
is the unique boundary point.

INPUT:


	certified_point (default=None) – this argument is not used
for type-II-points




OUTPUT:

A pair \((f, s)\), where \(f\) is a polynomial in the generator \(x\) of the
function field of \(X\) which is irreducible over \(\hat{K}\), or \(1/x\),
and where \(s\) is a nonnegative rational number. This data represents a
discoid \(D\) via the condition \(v_\xi(f)\geq s\).

Then self is the unique boundary point of \(D\), and if, moreover,
self is not the Gauss point then \(D\) contains precisely the points
\(\xi\) which are greater or equal to self.

The representation \((f,s)\) is normalized as follows:


	if this point lies in the closed unit disk then \(f\) is monic and
integral, and \(s\geq 0\). We either have \((f,s)=(x,0)\) (if this point
is the Gauss point and \(D\) the closed unit disk) or \(s>0\).


	if this point is not in the closed unit disk then \(s>0\), and \(f\) is
either integral with constant term \(1\) and only strictly positive slopes,
or \(f=1/x\). In the first case, \(D\) does not contain the point at infinity,
in the second case it does. In both cases, \(D\) is disjoint from the
closed unit disk.




EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(F, v_2)
sage: X.gauss_point().discoid()
(x, 0)
sage: X.infty().discoid()
(1/x, +Infinity)










	
improved_approximation()

	Return an improved approximation of self.

This is meaningless for type-II-points, so self is returned.






	
is_gauss_point()

	Return True if self is the Gauss point.






	
is_in_unit_disk()

	True is self is contained in the unit disk.






	
is_inductive()

	True if self corresponds to an inductive pseud-valuation.
This is always true for points of type II.






	
is_infinity()

	Check whether self is the point at infinity.






	
is_limit_point()

	True is self corresponds to a limit valuation.
This is never true for points of type II.






	
parameter()

	Return the parameter with respect to which this point is defined.

This is either \(x\) (if the point lies in the unit disk) or \(1/x\) otherwise.






	
pseudovaluation()

	Return the pseudovaluation corresponding to this point.

OUTPUT:

Since self is a point of type II, the output is a discrete
valuation on the function field of the underlying Berkovich line.






	
pseudovaluation_on_polynomial_ring()

	Return the pseudo-valuation on the polynomial ring ‘K[y]’
corresponding to self, where \(y\) is either \(x\) or \(1/x\) depending
on whether self lies in the standard closed unit disk or not.






	
type()

	Return the type of self.






	
valuation()

	Return the valuation corresponding to this point.

OUTPUT:

The discrete valuation on the function field of the underlying Berkovich
line corresponding to this point.










	
class mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine(X, v)

	Bases: mclf.berkovich.berkovich_line.PointOnBerkovichLine

An algebraic point of type I.

INPUT:


	X – a Berkovich projective line over a valued field \(K\)


	v – an infinite discrete pseudovaluation on the function field \(F=K(x)\)




OUTPUT: a point of type I on X

Here the point \(\xi\) on \(X\) corresponds to the discrete pseudo-valuation \(v\) on
the function field \(F=K(x)\).

Alternatively, v can be a pair \((v_0,y)\), where \(v_0\) is an infinite
discrete pseudo-valuation on a polynomial ring over \(K\) and \(y\) is a generator
of the function field \(F\). Then \(v\) is the infinite discrete pseudo-valuation
of \(F\) whose restriction to the subring ring \(K[y]\)
is equal to \(v_0\).


	
approximation(certified_point=None, require_maximal_degree=False)

	Return an approximation of this point.

INPUT:


	certified point (default=None) – a point on the Berkovich line


	require_maximal_degree (default=False) – boolean




OUTPUT:

A a point which is inductive and approximates self, in such a way that
we can distinguish self from certified point.

If self is an inductive point, then self is returned. Otherwise,
self is a limit point, and the output is a point of type II greater
or equal to self (i.e. corresponding to a discoid containing self).
If certified_point is not None and distinct from self, then
the output is not greater or equal to certified_point.

If require_maximal_degree is True then any approximation will have
the same degree as the limit point. Here the degree of an inductive
point means the degree of the last key polynomial describing it, and the
degree of a type-I-point is the degree of its minimal polynomial.






	
discoid(certified_point=None)

	Return a representation of a discoid approximating self.

INPUT:


	certified_point (default=None) – a point of type II




OUTPUT:

A pair \((f, s)\), where \(f\) is a polynomial in the generator \(x\) of the
function field of \(X\) which is irreducible over \(\hat{K}\), or \(f=1/x\),
and where \(s\) is a nonrational number, or is equal to \(\infty\).
This data represents a (possibly degenerate) discoid \(D\) via the condition
\(v_\xi(f)\geq s\).

\(D\) as above is either the degenerate discoid with \(s=\infty\) which has
self as the unique point, or \(D\) is an approximation of self
(this simply means that self is contained in \(D\)). If
certified_point is given and is not equal to self then it is
guaranteed that it is not contained in \(D\).

We further demand that the discoid \(D\) is either contained in the closed
unit disk, or is disjoint from it. Such discoids correspond one-to-one
to points of type II.






	
equation()

	Return an equation for the Galois orbit of this point.

OUTPUT:

An element \(f\) of the function field of \(X\) which is either
an irreducible polynomial in the standard generator \(x\), or is equal to
\(1/x\), and such that \(v_\xi(f)=\infty\).






	
function_field_valuation()

	Return the function field valuation corresponding to this point

OUTPUT:

the discrete valuation on the function field \(F=K(x)\) which
corresponds to the image of this point on \(X=\mathbb{P}^1_K\) (which is,
by hypothesis, a closed point).






	
improved_approximation()

	Return an improved approximation of self.






	
is_gauss_point()

	Return True if self is the Gauss point.






	
is_in_unit_disk()

	True is self is contained in the unit disk.






	
is_inductive()

	Check whether this points corresponds to an inductive valuation.






	
is_limit_point()

	Check whether this point corresponds to a limit valuation.






	
pseudovaluation()

	Return the pseudovaluation corresponding to this point.

OUTPUT:

a discrete pseudovaluation on the rational function field of the
Berkovich line of which self is a point.






	
pseudovaluation_on_polynomial_ring()

	Return the pseudovaluation representing self.

OUTPUT:

A discrete pseudovaluation on a polynomial subringring \(K[y]\)
from which self is induced.
It is either inductive or a limit valuation.






	
type()

	Return the type of self






	
valuation()

	Return the function field valuation corresponding to this point.

OUTPUT:

the normalized discrete valuation on the function field of the Berkovich
line corresponding to this point of type I.

This should not be confused with the pseudovaluation usually associated
with a type-I-point.

EXAMPLES:

sage: from mclf.berkovich.berkovich_line import BerkovichLine
sage: F.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(F, v_2)
sage: X.gauss_point().valuation()
2-adic valuation
sage: xi = X.point_from_discoid(x+1, Infinity)
sage: xi.valuation()
(x + 1)-adic valuation














	
mclf.berkovich.berkovich_line.inverse_generator(y)

	Return the inverse generator of a given generator of a rational function field.

INPUT:


	y - a generator of a rational function field \(F=K(x)\)




OUTPUT:

The inverse generator for \(y\). So if \(\phi:F\to F\) is the automorphism
of \(F\) such that \(\phi(x)=y\) then \(z:=\phi^{-1}(x)\) is the inverse generator.






	
mclf.berkovich.berkovich_line.is_generator(y)

	Test whether an element is a generator of a rational function field.

INPUT:


	y - an element of a rational function field \(F=K(x)\)




OUTPUT:

True if \(F=K(y)\), False otherwise.






	
mclf.berkovich.berkovich_line.valuation_from_discoid(vK, f, s)

	Return the inductive valuation corresponding to a discoid.

INPUT:


	vK – a discrete valuation on a field \(K\)


	f – a nonconstant monic integral polynomial over \(K\)


	s – a nonnegative rational number, or \(\infty\)




OUTPUT:

an inductive valuation v on the domain of f, extending vK,
corresponding to the discoid \(D\) defined by \(w(f)\geq s\). In other words,
this means that \(D\) defined above is irreducible (and hence a discoid),
and \(v\) is its unique boundary point.

If \(D\) is not irreducible, an error is raised.

EXAMPLES:

An example that created an error in a previous version:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: v_2 = QQ.valuation(2)
sage: f =  x^6 - 8030/3241*x^5 + 24468979*x^4 + 14420644*x^3 + 24136511*x^2 + 5386/1505*x + 3981/5297
sage: valuation_from_discoid(v_2, f, 76/15)
[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 2/3, v(x^3 + 3*x^2 + 3*x - 3) = 38/15 ]
sage: _(f)
76/15










	
mclf.berkovich.berkovich_line.valuations_from_inequality(vK, f, s, v0=None)

	Return the list of inductive valuations corresponding to the given inequlities.

INPUT:


	vK – a discrete valuation on a field \(K\)


	f – a nonconstant monic integral polynomial over \(K\)


	s – a nonnegative rational number, or \(\infty\)


	v0 – an inductive valuation on the parent of f (default: None)




OUTPUT:

a list of inductive valuations on the domain of f, extending vK,
corresponding to the boundary points of the irreducible components of the
affinoid defined by the condition \(v(f)\geq s\). Note that these components
are all discoids.

If \(v_0\) is given then the output only includes the valuations greater or
equal to \(v_0\).









          

      

      

    

  

    
      
          
            
  
Finite subtrees of the Berkovich line

Let \(K\) be a field and \(v_K\) a discrete valuation on \(K\). Let \(X=\mathbb{P^1_K}\)
be the projective line over \(K\). Let \(X^{an}\) denote the
\((K,v_K)\)-analytic space associated to \(X\). We call \(X^{an}\) the Berkovich
line over \(K\).

Let \(\xi^g\) be the Gauss point on \(X^{an}\), corresponding to the Gauss
valuation on the function field of \(X\) with respect to the canonical parameter
\(x\). Then \(X^{an}\) has a natural partial ordering for which \(\xi^g\) is the
smallest element. With respect to this partial ordering, any two elements have
a unique infimum.

A Berkovich tree is a finite (nonempty) subset \(T\) with the
property that for any two elements in \(T\) the infimum is also contained in
\(T\). In particular, a \(T\) has a least element, called the root of the tree.

Given any finite subset \(S\) of \(X^{an}\), there is now a unique minimal
subtree \(T\) contaning \(S\). We call \(T\) the tree spanned by \(S\).

This module realizes finite subtrees of \(X^{an}\) as combinatorial objects,
more precisely as finite rooted combinatorial trees. So a tree consists
of a root, and a list of children. If the tree is a subtree of another tree,
then there is a link to its parent.

AUTHORS:


	Stefan Wewers (2017-02-13): initial version




EXAMPLES:

<Lots and lots of examples>






	
class mclf.berkovich.berkovich_trees.BerkovichTree(X, root=None, children=None, parent=None)

	Bases: SageObject

Create a new Berkovich tree \(T\).

INPUT:


	X – a Berkovich line


	root – a point of X (default: None)


	children – a list of Berkovich trees on X (default = None)


	parent – a Berkovich tree or None (default: None)




OUTPUT:

A Berkovich tree \(T\) on \(X\) with root root, children children and
parent parent.
\(T\) may be empty (no root and no children), but if there are children
then there must be root.

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: T = BerkovichTree(X); T
Berkovich tree with 0 vertices
sage: xi = X.gauss_point()
sage: T.find_point(xi)






	
adapt_to_function(f)

	Add all zeroes and poles of \(f\) as leaves of the tree.

INPUT:


	f – a rational function on \(X\)




OUTPUT:

the new tree obtained by adding all zeroes and poles of \(f\) as
vertices to the old tree.






	
add_point(xi)

	Return the tree spanned by self and the point xi.

INPUT:


	xi – A point of type I or II on X




OUTPUT: \(T_1\), \(T_2\), where


	\(T_1\) is the tree obtained from \(T_0\) as a vertex.


	\(T_2\) is the subtree of \(T_1\) with root \(\xi\)




If \(T_0\) has a parent, then the root of \(T_0\) must be less than \(\xi\).
Therefore, the parent of \(T_1\) will be the original parent of \(T_0\).

Note that this command may change the tree \(T_0\)!  For instance, \(\xi\) may
become the root of \(T_1\) and then \(T_0\) has \(T_1\) as new parent.






	
adjacent_vertices(xi0)

	List all vertices of the tree adjacent to a given vertex.






	
berkovich_line()

	Return the Berkovich line underlying this tree.






	
children()

	Return the list of all children.

This is a deep copy of the internal list of children!
Therefore, it cannot be used to change the tree.






	
copy()

	Return a copy of self.






	
direction_from_parent()

	Return the direction from the parent.

OUTPUT: the type V point \(\eta\) representing the direction from the
root of the parent of self to the root of self.

If self has no parent, an error is raised.






	
direction_to_parent()

	Return the direction to the parent.

OUTPUT: the type V point \(\eta\) representing the direction from the
root of self to the root of its parent.

If self has no parent, an error is raised.

The direction is not well defined if the root of self is a point of
type I. Therefore, an error is raised in this case.






	
find_point(xi)

	Find subtree with root xi.

INPUT:


	xi – a point on the Berkovich line underlying self




OUTPUT:

The subtree \(T\) of self with root xi, or None if xi
is not a vertex of self.

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: T = BerkovichTree(X); T
Berkovich tree with 0 vertices





Searching in the empty tree does not give an error anymore.:

sage: xi = X.gauss_point()
sage: T.find_point(xi)

sage: T.add_point(xi)
(Berkovich tree with 1 vertices, Berkovich tree with 1 vertices)
sage: T.find_point(xi)
Berkovich tree with 1 vertices










	
graph()

	Return a graphical representation of self.

OUTPUT:

G, vert_dict,

where G is a graph object and vert_dict is a dictionary associating
to a vertex of G the corresponding vertex of self.






	
has_parent()

	Return True if self has a parent.






	
is_leaf()

	Return True if self is a leaf.






	
leaves(subtrees=False)

	Return the list of all leaves.

If subtrees is True, then we return the list of subtrees
corresponding to the leaves.






	
make_child(new_child, check=True)

	Make new_child a child of self.

INPUT:


	new_child – a Berkovich tree


	check – a boolean (default False)




We make the tree new_child a child of self. For this to make
sense, two conditions have to be satisfied:


	the root of new_child has to be strictly greater than the root of
self


	the root of new_child has to be incomparable to the roots of the
already existing children of self




These conditions are checked only if check ist True.

Note:

This changes both trees self and new_child.






	
make_parent(parent)

	add parent as parent of self.






	
parent()

	Return the parent of self.






	
paths()

	Return the list of all directed paths of the tree.

OUTPUT:

the list of all directed paths of the tree, as a list of pairs
\((\xi_1,\xi_2)\), where \(\xi_2\) is a child of \(\xi_1\).






	
permanent_completion()

	Return the permanent completion of self.

OUTPUT:

A Berkovich tree \(T_1\) which is the permanent completion of self.

A Berkovich tree tree \(T\) on a Berkovich line \(X\) over \((K,v_K)\) is
called permanently complete if for all finite extensions \((L,v_L)\) of
\((K,v_K)\), the inverse image of the set of vertices of \(T\) in \(X_L\) is
again the set of vertices of a Berkovich tree. It is easy to see that
for any Berkovich tree \(T\) there exists a minimal refinement \(T_1\) which
is permanently complete. It is called the permanent completion of \(T\).

ALGORITHM:

Let \(\xi_0\) be the root and \(\xi_1,\ldots,\xi_n\) the leaves of \(T\).
To compute \(T_1\) we consider, for \(i=1,\ldots,n\), the path
\(\gamma = [\xi_0,\xi_n]\) and the function on \(\gamma\) which maps a point
\(\xi\) to the number of geometric components of the discoid \(D_\xi\).
We add the jumps of this function to \(T\). Having done this for all \(i\)
we obtain the permant completion \(T_1\) of \(T\).

EXAMPLES:

sage: from mclf import *
sage: FX.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(FX, v_2)
sage: xi0 = X.point_from_discoid(x^4+2, 5)
sage: T = BerkovichTree(X, xi0)
sage: T.permanent_completion()
Berkovich tree with 3 vertices










	
position(xi)

	Find the position of xi in the tree T=self.

INPUT:


	xi – a point on the Berkovich line underlying T




OUTPUT:

xi1, T1, T2, is_vertex,

where


	xi1 is the image of xi under the retraction map onto the total space
of T


	T1 is the smallest subtree of T whose total space contains xi1


	T2 is the child of T1 such that xi1 lies on the edge connecting T1
and T2 (or is equal to T1 if xi1 is the root of T1)


	is_vertex is True if xi1 is a vertex of T (which is then the root of
T1) or False otherwise









	
print_tree(depth=0)

	Print the vertices of the tree, with identation corresponding to depth.

It would be nicer to plot the graph and then list the points corresponding
to the vertices.






	
remove_child(child)

	Remove child from list of children of self.

INPUT:


	child – a Berkovich tree




We remove child from the list of children of self. If child
is not in this list, an error is raised.

Note:

This function changes both self and child.






	
remove_point(xi, test_inequality=True)

	Remove a point from the tree, if possible.

INPUT:


	xi – a point of type I or II on the Berkovich line


	test_inequality -- a boolean (default: ``True)




OUTPUT:

the tree obtained from self by removing, if possible, the vertex
with root \(\xi\).

Removing the vertex with root \(\xi\) is possible if a vertex with root
\(\xi\) exists, and if it has at most one child. Otherwise, nothing is
changed.

Note that the vertex to be removed may be the root of this tree. If this
is the case and there is no child, then an empty tree is return and
the tree is remove as a child from its parent.

If test_inequality is False then it is assumed that \(\xi\) is
greater or equal to the root of self. This saves us a test for
inequality.

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: T = BerkovichTree(X)
sage: T, _ = T.add_point(X.gauss_point())
sage: T = T.remove_point(X.gauss_point()); T
Berkovich tree with 0 vertices
sage: xi_list = [xi for xi, m in X.divisor(x*(x^2+2))]
sage: for xi in xi_list: T, _ = T.add_point(xi)
sage: T
Berkovich tree with 5 vertices
sage: T.remove_point(xi_list[0])
Berkovich tree with 4 vertices










	
root()

	Return the root of the tree.






	
subtrees()

	Return the list of all subtrees.






	
vertices()

	Return the list of all vertices.










	
mclf.berkovich.berkovich_trees.component_jumps(xi0, xi1)

	Helper function for permanent_completion.






	
mclf.berkovich.berkovich_trees.create_graph_recursive(T, G, vertex_dict, root_index)

	Create recursively a graph from a Berkovich tree.






	
mclf.berkovich.berkovich_trees.replace_subtree(T1, T2)

	Replace a subtree of a Berkovich tree by another tree.

INPUT:


	T1, T2 - Berkovich trees with the same root




It is assumed that \(T_1\) has a parent, so it is a proper subtree of an
affinoid tree \(T_0\). We replace the subtree \(T_1\) with \(T_2\).

NOTE:

This changes the tree `T_0`; therefore this function must be
used carefully.













          

      

      

    

  

    
      
          
            
  
Points of type V on the Berkovich line.

Let \(X^{an}\) be a Berkovich line over a discretely valued field \(K\).
A “point” \(\eta\) of type V on \(X^{an}\) corresponds to a
pair \((v,\bar{v})\), where \(v\) is a type-II-valuation and \(\bar{v}\) is a
function field valuation on the residue field of \(v\).  We call \(v\) the
“major valuation” and \(\bar{v}\) the “minor valuation” associated to \(\eta\).

Note that \(\eta\) is not, properly speaking, a point on the analytic space
\(X^{an}\), but rather a point on the adic space \(X^{ad}\).

Equivalent ways to describe \(\eta\) are:


	the rank-2-valuation given as the composition of \(v\) and \(\bar{v}\)


	a “residue class” on \(X^{an}\); more precisely, \(\eta\) corresponds to
a connected component of \(X^{an}-\{\xi\}\), where \(\xi\) is the
type-II-point corresponding to \(v\) (and then \(\xi\) is the unique boundary
point of the residue class)


	an “open discoid”: more precise, a pair \((\phi,s)\), where \(\phi\) is
a rational function such that the open discoid


\[D = \{ v \mid v(\phi) > s \}\]

is the residue class corresponding to \(\eta\). Moreover, either \(\phi\)
of \(1/\phi\) is a monic, integral and irreducible polynomial in \(x\)
or in \(1/x\).



	a “tangent vector” on \(X^{an}\); more precisely a group homomorphism


\[\partial: K(x)^* \to \mathbb{Z}\]





with the following properties: let \((\phi,s)\) be the discoid representation
of \(\eta\). We define, for \(t\geq s\), the valuation \(v_t\) as the valuation
corresponding to the boundary point of the open discoid \(v(\phi)>t\). Then
\(\partial(f)\) is the right derivative at \(t=s\) of the function


\[t \mapsto v_t(f).\]

The most convenient way to determine a point of type V is as follows. Let
\(\xi_1\) be a point of type II and \(\xi_2\) be of type I or II, distinct from
\(\xi_1\). Then


\[\eta = \eta(\xi_1,\xi_2)\]

is the point of type V corresponding to the connected component of
\(X-\{\xi_1\}\) containing \(\xi_2\). We call \(\eta\) the direction
from \(\xi_1\) towards \(\xi_2\).


	
class mclf.berkovich.type_V_points.TypeVPointOnBerkovichLine(xi0, xi1)

	Bases: SageObject

A point of type V on the Berkovich line.

Let \(\xi_1\) be a point of type II, and \(\xi_2\) a point of type I or II.
Then we can define the point of type V \(\eta:=\eta(\xi_1,\xi_2)\) as the unique
residue class with boundary point \(\xi_1\) containing \(\xi_2\).

INPUT:


	xi0 – point of type II


	xi1 – arbitrary point of X, distinct from xi0




OUTPUT:

The type-V-point corresponding to the connected component
of \(X^{an}-{\xi0}\) which contains \(\xi1\).

EXAMPLES:

sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(2)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)
sage: xi1 = X.point_from_discoid(x,1)
sage: xi2 = X.point_from_discoid(x^2+4,3)
sage: eta = TypeVPointOnBerkovichLine(xi1, xi2)





We see that eta represents an open disk inside the closed unit disk.

sage: eta
Point of type V given by residue class v(x + 2) > 1





Here is an example of a type-V-point representing an open disk in the
complement of the closed unit disk:

sage: xi0 = X.gauss_point()
sage: xi3 = X.point_from_discoid(2*x+1, 2)
sage: eta = TypeVPointOnBerkovichLine(xi0, xi3)
sage: eta
Point of type V given by residue class v(1/x) > 0





We check that xi0 lies outside the open disk and xi3 inside:

sage: eta.is_in_residue_class(xi0)
False
sage: eta.is_in_residue_class(xi3)
True

sage: xi4 = X.point_from_discoid(2*x+1, 4)
sage: TypeVPointOnBerkovichLine(xi3, xi4)
Point of type V given by residue class v((2*x + 1)/x) > 3
sage: TypeVPointOnBerkovichLine(xi4, xi3)
Point of type V given by residue class v(1/2*x/(x + 1/2)) > -5





The following example shows that the minor valuation is computed correctly

sage: xi5 = X.point_from_discoid(1/x,1)
sage: eta = TypeVPointOnBerkovichLine(xi0,xi5)
sage: eta
Point of type V given by residue class v(1/x) > 0
sage: eta.minor_valuation()
Valuation at the infinite place






	
berkovich_line()

	Return the Berkovich line underlying the point.






	
boundary_point()

	Return the boundary point of the type-V-point.






	
minor_valuation()

	Return the minor valuation of this type V point.






	
open_discoid()

	Return the representation of self as an open discoid.

INPUT:


	self: a point of type V on a Berkovich line




OUTPUT:

a pair \((\phi, s)\), where \(\phi\) is a rational function and \(s\) a
rational number is such that


\[D = \{ v\in X \mid v(\phi) > s \}\]

is the open discoid representing the type-V-point self.

Either \(\phi\) of \(1/\phi\) is a monic, integral and strongly irreducible
polynomial in \(x\) or in \(1/x\).






	
point_inside_discoid(t)

	Return the point inside the residue class at the value \(t\).

The type-V-point corresponds to an open discoid defined by


\[v(\phi) > s.\]

For for a rational number \(t>s\) we can define the type-II-point
\(\xi_t\) corresponding to the closed discoid defined by


\[v(\phi) >= t.\]

If \(t=\infty\) we obtain the type-I-point corresponding to \(\phi=0\).

INPUT:


	t – a rational number or Infinity




OUTPUT:

The point \(\xi_t\) inside the residue class corresponding to the closed
discoid defined by \(v(\phi) >= t\).

If \(t <= s\) then an error is raised.













          

      

      

    

  

    
      
          
            
  
Affinoid subdomains of the Berkovich line.

Let \(K\) be a field, \(v_K\) a discrete valuation on \(K\) and \(X\) the Berkovich
line over \(K\), with respect to \(v_K\).

In this file we realize a Sage class which allows us to create and work with
strictly affinoid subdomains of \(X\).

Let \(T\) be a Berkovich tree in \(X\) and let \(r:X\to T\) denote the
canonical retraction map. Let \(S\) be a nonempty proper subset of \(V(T)\).
We define \(\bar{S}\) as the union of \(S\) and of all edges connecting two points
of \(S\). Then the inverse image \(U:=r^{-1}(\bar{S})\) is an affinoid subdomain of
\(X\). We use the notation \(U=U(T,S)\).

We say that a Berkovich tree \(T\) supports an affinoid domain \(U\) if there
exists a nonempty proper subset \(S\) of \(V(T)\) with \(U=U(T,S)\). If this is the
case then \(S\) consists exactly of the vertices of \(T\) which lie in \(U\).

Given any affinoid domain \(U\), there exists a unique minimal tree \(T\) which
supports \(U\). Moreover, every tree \(T'\) which contracts to \(T'\) supports \(U\)
as well.

AUTHORS:


	Stefan Wewers (2017-07-29): initial version




EXAMPLES:

<Lots and lots of examples>





TO DO:


	more doctests


	add missing functions: intersection, ..


	see if we can remove some obsolete functions


	improve point_close_to_boundary





	
class mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine(T)

	Bases: SageObject

Return the affinoid domain corresponding to the affinoid tree T.

Objects of this class represent (generic) affinoid domains on the Berkovich line.

INPUT:


	T – an affinoid tree




OUTPUT:

The affinoid corresponding to T.

EXAMPLES:

sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(2)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)





TO DO:


	




	
affinoid_subtree(xi0, is_in=None)

	Return the affinoid subtree with given root.

This function is used inductively to construct a tree representing the
affinoid \(U\), if such a tree is not explicitly given, and the affinoid is
defined in some other way (as a rational domain, or as a union of other
affinoid domains,..).

INPUT:


	xi0 - a point of type II


	is_in – a boolean, or None (default None)




OUTPUT: an affinoid tree with root \(\xi0\) which represents the
intersection of \(U\) with \(D_{\xi_0}\), the set of points \(\geq \xi_0\)
(a closed discoid with boundary point \(\xi_0\), or the full Berkovich
line if \(xi_0\) is the Gauss point).

If is_in is given, we assume it is equal to the truth value of
“\(\xi_0\) lies in this affinoid”. This is useful to avoid an extra test
for membership.






	
affinoid_subtree_in_hole(eta)

	Return the affinoid subtree with given root.

This is a helper function for affinoid_subtree.

INPUT:


	eta - a point of type V




OUTPUT:

We assume that \(\eta\) represents a downward hole of this
affinoid \(U\). This means that the boundary point of \(\eta\) lies in \(U\)
but \(\eta\) does not. We return an affinoid tree \(T\) whose root is the
boundary point of \(\eta\), representing the affinoid


\[(X\backslash D_\eta)\cup (D_\eta\cap U)`.\]






	
berkovich_line()

	Return the Berkovich line underlying this affinoid.






	
boundary()

	Return the Shilov boundary of the affinoid.

The Shilov boundary is a finite set of type-II-points contained in the
affinoid with the property that the valuative function of every rational
function which is regular on the affinoid takes a minimum on this set.

The Shilov boundary is simply the union of the boundaries of the
connected components.






	
components()

	Return the list of connected components of this affinoid.






	
connected_component_tree(xi0)

	Return the tree of the connected component of this affinoid with given root.

INPUT:


	xi0 – a point type II or V




OUTPUT:

If \(\xi_0\) is a point of type II, then we return an affinoid tree
underlying the connected component of this affinoid \(U\) with minimal
point \(\xi_0\).

It is assumed but not checked that \(\xi_0\) lies in this affinoid.

If \(\xi_0\) is of type V then we return the branch of this tree in the
direction of \(\xi_0\). This has the effect of “filling in all holes”
which do not lie in the open discoid \(D_{\xi_0}\). It does not
correspond to the intersection with \(D_{\xi_0}\).

Note:

This is the generic algorithm for the parent class
AffinoidDomainOnBerkovichLine. It is assumed that the underlying
affinoid tree has already been computed. Otherwise we run into an
infinite loop.






	
intersection(V)

	Return the affinoid which is the intersection of self with V.

Not yet implemented.






	
intersection_with_unit_disk()

	Return the intersection of this affinoid with the unit disk.






	
is_empty()

	Return wether this affinoid is the empty set.






	
is_full_berkovich_line()

	Return whether this affinoid is equal to the full Berkovich line.






	
is_in(xi)

	Return whether xi lies on the affinoid.

INPUT:


	xi – a point of type I, II or V




OUTPUT:

True if xi lies on the affinoid, False otherwise.






	
minimal_points(xi0=None)

	Return the minimal points of this affinoid greater than a given point.

INPUT:


	xi0 – a point of type II, or None (default None)




OUTPUT:

The list of all minimal points of this affinoid which are
\(\geq \xi_0\).






	
number_of_components()

	Return the number of connected components of ths affinoid.






	
point_close_to_boundary(xi0)

	Return a type-I-point inside the affinoid, close to xi0.

INPUT:


	xi0 – a boundary point of the affinoid self




OUTPUT:

A type-I-point xi1 on the affinoid \(U:=\) self which
is “close” to the boundary point xi0.

The latter means that xi1 maps onto the irreducible components
of the canonical reduction of \(U\) corresponding to xi0.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: U = rational_domain(X, 2/x/(x+1))
sage: U
Elementary affinoid defined by
v(1/x) >= -1
v(1/(x + 1)) >= -1
<BLANKLINE>

sage: xi0 = U.boundary()[0]
sage: U.point_close_to_boundary(xi0)
Point of type I on Berkovich line given by x + 2 = 0





At the moment, our choice of point close to the boundary is not
optimal, as the following example shows:

sage: U = rational_domain(X, 2/(x^2+x+1))
sage: U
Elementary affinoid defined by
v(1/(x^2 + x + 1)) >= -1

sage: xi0 = U.boundary()[0]
sage: U.point_close_to_boundary(xi0)
Point of type I on Berkovich line given by x^2 + 3*x + 1 = 0





The point at infinity is also inside U and ‘close to the boundary’,
and has smaller degree than the point produced above.

The following raised an error in an earlier version

sage: f = (-2/25*x^6 - 4*x^5 - 1351/225*x^4 - 52/225*x^3 - 173/225*x^2 - 2/9*x + 2/3)/(x^2 + 2/3*x)
sage: h = valuative_function(X, f)
sage: U = h.affinoid_domain()
sage: U
Affinoid with 2 components:
Elementary affinoid defined by
v(x) >= 0
v(1/x) >= -1/2
Elementary affinoid defined by
v((2*x^2 + 1)/x^2) >= 2
<BLANKLINE>

sage: U.point_close_to_boundary(U.boundary()[1])
Point of type I on Berkovich line given by x^2 + 2 = 0






Todo


	Use a better strategie to find a point of minimal degree.











	
simplify()

	Simplify this affinoid.

This only changes the internal representation by an “affinoid tree”.
Very likely, this is unnecessary because the simplification has already
occured when the affinoid was first constructed.






	
tree()

	Return the Berkovich tree representing this affinoid.






	
union(V)

	Return the affinoid which is the union of self with V.

Need new implementation.










	
class mclf.berkovich.affinoid_domain.AffinoidTree(X, root=None, children=None, parent=None, is_in=False)

	Bases: mclf.berkovich.berkovich_trees.BerkovichTree

A marked Berkovich tree representing an affinoid subdomain.

An AffinoidTree is a Berkovich tree \(T\) in which every vertex has an additional
flag “is_in” with value True or False. It represents an
affinoid subdomain \(U\) in the way explained above.

INPUT:


	X – a Berkovich line


	root – a point on X or None (default = None)


	children – a list of affinoid trees or None (default = None)


	parent – an affinoid tree or none (default = None)


	is_in – a boolean or None (default = None)




OUTPUT:

An affinoid tree on X. It is either empty (if only X is given) or
it has root, parent, children and the flag is_in as given
by the extra parameters.

EXAMPLES:

sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(2)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)






	
compute_connected_components(comp_list, new_comp)

	Compute the connected components of the represented affinoid.

INPUT:


	comp_list – a list (of lists of lists)


	new_comp – a list (of lists)




OUTPUT:


	all connected components whose root is a vertex of T=``self`` are
added to the list comp_list.


	all boundary_lists which belong to T and to the connected component
which contains the root of T  are added to new_comp (in particular,
if the root of T does not lie in the affinoid then the list is unchanged).




Here a boundary list is a list of type-V-points which represent holes
of the affinoid with a common boundary point. A connected component
is a list of boundary lists.

EXAMPLES:

sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(2)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)










	
connected_components(xi0=None)

	Return a list of affinoid trees representing the connected
components below a given point.

INPUT:


	xi0 – a point of type II or V




OUTPUT:

A list of affinoid trees representing the connected components
of the affinoid corresponding to this tree, which are \(\geq\) to the
given point \(\xi_0\). If it is not given, then we ignore
this condition.

Note that \(\xi_0\) may be of type V.






	
copy(parent=None)

	Return a copy of self, force parent as parent.

WARNING! something is wrong with this function!!






	
holes(upward_hole=True)

	Return the holes of this affinoid tree.

OUTPUT:

A list of triples \((T_1, T_2, \eta)\), where \(T_1\), \(T_2\) are
subtrees of self and \(\eta\) is a point of type V, satisfying the
following conditions:


	\(T_2\) is a child of \(T_1\), or vice versa


	the root of \(T_1\) is a boundary point of the affinoid underlying self


	the root of \(T_2\) does not lie in the affinoid


	\(\eta\) is the direction from the root of \(T_1\) to the root of \(T_2\)




This implies that \(\eta\) is a hole of the affinoid represented by self.






	
intersection_with_unit_disk()

	Return the tree representing the intersection with the unit disk.






	
is_in(xi)

	Return True if xi lies in the affinoid  \(U\) represented by self.

INPUT:


	xi – a point on the Berekovich space underlying this affinoid tree




Note that \(\xi\) may also be a point of type V.

To test this, we compute the image of xi under the retraction map
onto the total space of T=self and check whether it lies on a vertex
in U or on an edge connecting two vertices in U.






	
minimal_points(xi0=None)

	Return the minimal points of the affinoid corresponding to this tree.

INPUT:


	xi0 – a point of type II or V, or None (default None)




OUTPUT: the list of all minimal points of the affinoid corresponding to
this tree, which are \(\geq \xi_0\). If \(\xi_0\) is not given, this condition
is ignored.

Note that \(\xi_0\) may be of type V.






	
root_is_in()

	Return whether the root of self lies in the affinoid.






	
show()

	Display a graphical representation of self.






	
simplify()

	Simplify this tree without changing the represented affinoid.










	
class mclf.berkovich.affinoid_domain.ClosedUnitDisk(X)

	Bases: mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine

Return the closed unit disk.

The closed unit disk is the affinoid on the Berkovich line with
function field \(F=K(x)\) defined by the inequality


\[v(x) >= 0.\]

INPUT:


	X – a Berkovich line




OUTPUT:

The closed unit disk inside X.

EXAMPLES:

sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(3)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)
sage: ClosedUnitDisk(X)
Elementary affinoid defined by
v(x) >= 0
<BLANKLINE>










	
class mclf.berkovich.affinoid_domain.ElementaryAffinoidOnBerkovichLine(T)

	Bases: mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine

Return the elementary affinoid corresponding to a boundary list.

An “elementary affinoid” is a connected affinoid subdomain of a Berkovich
line \(X\) which is the complement of a finite set of disjoint residue classes
in \(X\). It can be represented by a “boundary list” as follows.

A “boundary list” is a list of lists, whose entries at the lowest level are
type-V-points on \(X\). Each sublist contains the type-V-points with a common
boundary point. The elementary affinoid corresponding to a “boundary list” is
the complement of the residue classes corresponding to the type-V-points
contained in the sublists. The set of boundary points of the type-V-points is
exactly the Shilov boundary of the affinoid.

INPUT:


	boundary_list – a list of lists containing type-V-points.




OUTPUT:

The elementare affinoid corresponding to comp_list.

TO DO:


	we need a function which produces an (algebraic) type-I-point inside the
affinoid.





	
inequalities()

	Return the inequalities defining the elementary affinoid, as a string.






	
is_empty()

	Return whether this affinoid is the empty set.






	
is_full_berkovich_line()

	Return whether this affinoid is the full Beerkovich line.










	
class mclf.berkovich.affinoid_domain.UnionOfDomains(affinoid_list)

	Bases: mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine

Return the union of a list of affinoid domains.

INPUT:


	affinoid_list - a nonempty list of affinoid domains




OUTPUT:

The union of the affinoid domains in affinoid_list


	
connected_component_tree(xi0)

	Return the tree of the connected component of this affinoid with given root.

INPUT:


	xi0 – a point type II or V




OUTPUT:

If \(\xi_0\) is a point of type II, then we return an affinoid tree
underlying the connected component of this affinoid \(U\) with minimal
point \(\xi_0\).

It is assumed but not checked that \(\xi_0\) is a minimal point of a
connected component of \(U\).

If \(\xi_0\) is of type V then we return the branch of this tree in the
direction of \(\xi_0\). This has the effect of ‘filling in all holes’
which do not lie in the open discoid \(D_{\xi_0}\). It does not
correspond to the intersection with \(D_{\xi_0}\).






	
is_in(xi)

	Return whether xi lies in this affinoid.

INPUT:


	xi – a point on the Berkovich line (type V points are allowed)




OUTPUT: True if \(\xi\) lies on this affinoid.






	
minimal_points(xi0=None)

	Return the minimal points of this affinoid greater than a given point.

INPUT:


	xi0 – a point of type II, or None (default None)




OUTPUT:

The list of all minimal points of this affinoid which are \(\geq \xi_0\).










	
mclf.berkovich.affinoid_domain.all_polynomials(F, x, d)

	List all polynomials in x over F of degree d.

INPUT:


	F: a finite field F


	x: generator of a polynomial ring over F




OUTPUT:

an iterator which list all elements of F[x] of degree d.






	
mclf.berkovich.affinoid_domain.rational_domain(X, f)

	Return the rational domain defined by the function f.

INPUT:


	X – a Berkovich line


	f – a nonconstant rational function on \(X\)




OUTPUT:

The rational domain


\[U := \{ \xi \in X \mid v_\xi(f) \geq 0 \}.\]

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: rational_domain(X, (x^2+2)/x*(x+1)/2)
Affinoid with 2 components:
Elementary affinoid defined by
v(x^2 + 2) >= 3/2
Elementary affinoid defined by
v(x + 1) >= 1
<BLANKLINE>





f may be nonconstant:

sage: rational_domain(X, F(1/2))
The empty set
sage: rational_domain(X, F(1))
the full berkovich line










	
mclf.berkovich.affinoid_domain.simplify_tree_at_vertex(T, T1)

	Simplify the affinoid tree at a given vertex.

This is now obsolete.

INPUT:


	T – an affinoid tree


	T1 – a subtree of \(T\)




OUTPUT: the affinoid tree \(T\) is simplified, starting at the subtree \(T_1\).

We check whether the root of \(T_1\) (which is a vertex of \(T\)) may be
contracted, or whether \(T_1\) has a unique child which may be omitted.
In the first case, we try to iterate this, if possible.

This may not simplify \(T\) as much as possible. However, if \(T\) has been
obtained from a simplified






	
mclf.berkovich.affinoid_domain.union_of_affinoid_trees(T1, T2)

	Return the tree representing the union of the affinoids with given trees.

This is now obsolete.

INPUT:



	T1, T2 – affinoid trees




OUTPUT: the tree representing the union of the affinoids represented by
\(T_1\) and \(T_2\).












          

      

      

    

  

    
      
          
            
  
Piecewise affine functions on the Berkovich projective line.

Let \(K\) be a field, \(v_K\) a discrete valuation on \(K\) and \(X=\mathbb{P}^1_K\)
the Berkovich line over \(K\).

A continuous function


\[h: X \to \mathbb{R}\cup\{\pm\infty\}\]

is called piecewise affine if it factors over the retraction map


\[r_T: X \to T\]

onto a Berkovich subtree \(T\subset X\), and the restriction of \(h\) to the edges
of \(T\) are affine (with respect to the natural affine structure of a path on a
Berkovich line).

The most important examples of piecewise linear functions are
valuative functions. For instance, to any nonzero rational function
\(f \in F=K(x)\) we associate the function


\[h_f:X \to \mathbb{R}\cup\{\pm\infty\},  \xi \mapsto v_\xi(f).\]

A general valuative function on \(X\) is simply a rational multiple of a function
of the form \(h_f\). Any such function \(h\) can be written uniquely in the form


\[h = a_0 + \sum_i a_i\cdot h_{f_i}\]

where the \(f_i\) are irreducible polynomials in the parameter \(x\),
and the \(a_i\) are rational numbers, with \(a_i \neq 0\) for \(i > 0\).

Let \(h\) be a nonconstant piecewise affine function on \(X\). Then the subset


\[U := \{ \xi \in X \mid h(\xi) \geq 0 \}\]

is an affinoid subdomain (unless it is empty, or the full Berkovich line \(X\)).
If \(h=h_f\) is the valuative function associated to a rational function \(f\), then
\(U\) is actually a rational domain.

AUTHORS:


	Stefan Wewers (2017-2019)




EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))





We can define a valuative function by a rational function on \(X\):

sage: f = (x^2+2*x-2)/(2*x-1)
sage: h = valuative_function(X, f)





We check that the value of \(h\) is the valuation of \(f\), at several points:

sage: xi = X.gauss_point()
sage: h(xi), xi.v(f)
(0, 0)
sage: xi = X.infty()
sage: h(xi), xi.v(f)
(-Infinity, -Infinity)
sage: xi = X.point_from_discoid(x, 3)
sage: h(xi), xi.v(f)
(1, 1)





We can also define a valuative function by a pair \((L, a_0)\):

sage: L = [(x - 1, 2/3), (x + 1, 3/2)]
sage: a_0 = -3
sage: h = valuative_function(X, (L, a_0))
sage: xi = X.point_from_discoid(x + 1, 2)
sage: h(xi)
2/3





We can compute the affinoid domain given by the inequality \(h(\xi)\geq 0\):

sage: h.affinoid_domain()
Affinoid with 2 components:
Elementary affinoid defined by
v(x - 1) >= 9/4
Elementary affinoid defined by
v(x + 1) >= 14/9






	
class mclf.berkovich.piecewise_affine_functions.AffineFunction(gamma, a, b)

	Bases: SageObject

An affine function on a closed annuloid or a closed discoid.

INPUT:


	xi1, xi2 – points on the Berkovich line \(X\) such that \(\xi_1<=\xi_2\)


	a, b – rational numbers




OUTPUT:

the affine function \(h\) on the domain \(D\) of the path \(\gamma = [\xi_1,\xi]\)
defined by \(a\) and \(b\). If \(t:D \to \mathbb{R}\) is the standard
parametrization, then


\[h(\xi) := a\cdot r_\gamma(\xi) + b.\]


	
berkovich_line()

	Return the Berkovich line underlying this affine function.






	
domain()

	Return the domain of definition of this affine function.






	
initial_point()

	Return the initial point of the path underlying this affine function.






	
initial_value()

	Return the initial value of this affine function.






	
is_constant()

	Return whether this affine function is constant.






	
is_in_domain(xi)

	Return whether a point is in the domain of definition of this affine function.






	
is_increasing()

	Return whether this affine function is strictly increasing.






	
path()

	Return the path underlying this affine function.






	
terminal_point()

	Return the terminal point of the path underlying this affine function.






	
terminal_value()

	Return the terminal value of this affine function.










	
class mclf.berkovich.piecewise_affine_functions.DirectedPath(xi1, xi2)

	Bases: SageObject

A directed path on the Berkovic path.

INPUT:


	xi1, xi2 – two points on the Berkovich line such that \(\xi1\leq \xi_2\)




OUTPUT:

the directed path \(\gamma = [\xi_1,\xi_2]\).

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))





We can define a path by specifying the initial and the terminal point:

sage: xi1 = X.point_from_discoid(x, 1)
sage: xi2 = X.point_from_discoid(x^2 + 4, 5)
sage: gamma = DirectedPath(xi1, xi2)
sage: gamma
path from Point of type II on Berkovich line, corresponding to v(x) >= 1 to Point of type II on Berkovich line, corresponding to v(x^2 + 4) >= 5





We use the standard parametrization for a path; it depends on the discoid
representation of the terminal point:

sage: gamma.point(3)
Point of type II on Berkovich line, corresponding to v(x + 2) >= 3/2





Given a path \(\gamma=[\xi_1,\xi_2]\), we define its tube \(D\) as follows.
If \(\xi_2\) is of type II, then \(D\) is the open annuloid
with boundary point points \(\xi_1\) and \(\xi_2\). If \(\xi_1\) is of type I,
then \(D:=D_{\xi_1}\) is the discoid with boundary point \(\xi_1\).:

sage: gamma.tube()
domain defined by
v(x + 2) > 1
v(1/(x^2 + 4)) > -5

sage: gamma.is_in_tube(X.gauss_point())
False

sage: gamma.is_in_tube(xi2)
False






	
berkovich_line()

	Return the Berkovich line on which this path lives.






	
initial_parameter()

	Return the initial parameter of this path.

OUTPUT:

a rational number \(s_0\) such that \(\gamma(s_0)\) is the initial point
of this path \(\gamma\).






	
initial_point()

	Return the initial point of this path.






	
initial_slope()

	Return the slope of this path at the initial point.






	
is_limit_path()

	Return whether the terminal point of this path is a limit point.






	
terminal_parameter()

	Return the terminal parameter of this path.

OUTPUT:

a rational number \(s_1\) (or \(\infty\))` such that \(\gamma(s_1)\) is the
terminal point of this path \(\gamma\).






	
terminal_point()

	Return the terminal point of this path.






	
tube()

	Return the tube around this path.

Let \(\xi_1\) be the initial and \(\xi_2\) be the terminal point of this path.
Then the tube is either the open annuloid with boundary points \(\xi_1\)
and \(\xi2\) (if \(\xi_2\) is of type II) or the closed discoid with boundary
point \(xi_1\) (if \(\xi_2\) is of type I).










	
class mclf.berkovich.piecewise_affine_functions.Discoid(xi0, xi1=None)

	Bases: mclf.berkovich.piecewise_affine_functions.Domain

Return a closed discoid of the Berkovich line.

INPUT:


	xi0 - a point on the Berkovich line \(X\)


	xi1 (default: None) – another point on \(X\)




OUTPUT:

the closed discoid \(D\) consisting of all point on the Berkovich line which
are greater or equal to \(\xi_0\). If \(\xi_1\) is given, then it is checked
whether \(\xi1\) lies in \(D\).

If \(\xi_0\) is the Gauss point, then \(D\) is taken to be the closed discoid
with minimal point \(\xi_0\), containing \(\xi_1\). If \(\xi_1\) is not given,
then \(D\) is taken to be the closed unit disk.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: Discoid(X.gauss_point())
the closed discoid defined by v(x) >= 0






	
minimal_point()

	Return the minimal point of this closed discoid.










	
class mclf.berkovich.piecewise_affine_functions.Domain(X, inequalities, strict_inequalities)

	Bases: SageObject

A domain in the Berkovich line, defined by inequalities.

Objects of this class are used as domians of definition of affine and
piecewise affine functions. Although they may be affinoid domains, this
class has no relation to the class AffinoidDomainOnBerkovichLine.

INPUT:


	X – a Berkovich line


	inequalities – a list of pairs \((f, a)\)


	strict_inequalities – a list of pairs \((g, b)\)




OUTPUT: the domain of \(X\) which is the intersection of the domains defined
by the inequalities


\[v(f) \leq a, \quad v(g) < b.\]

Here \(f, g\) are assumed to be nonconstant rational functions on \(X\), and
\(a\), \(b\) rational numbers.

If the inequalities and strict_inequalities are both empty then the
full Berkovich line is returned.


	
berkovich_line()

	Return the Berkovich line underlying this domain.






	
contains_infty()

	Return whether this domain contains the point at infinity.






	
inequalities()

	Return the list of non-strict inequalities which are part of the
definition of this domain.






	
is_full_berkovich_line()

	Return whether this domain is the full Berkovich line.






	
minimal_point()

	Return the minimal point of this domain.

Since an arbitrary domain has no minimal point, this method raises
an error, unless this domain is the full Berkovich line.






	
strict_inequalities()

	Return the list of strict inequalities which are part of the
definition of this domain.










	
class mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction(D, a0, restrictions)

	Bases: SageObject

A piecewise affine function on a domain in the Berkovich line.

INPUT:


	D – a domain in the Berkovich line


	a0 – a rational number


	restrictions – a list of pairs \((h_1,h_2)\)




OUTPUT:

a piecewise affine function \(h\) on \(D\).

We assume that \(D\) is either a closed discoid, or the full Berkovich line \(X\).
Let \(\xi_0\) be the initial point of the function, which is either the boundary
point of \(D\) or, if \(D=X\), the Gauss point on \(X\).

The restrictions are the restrictions of \(h\) to proper open subdiscoids
\(D_1\) of \(D\). It is assumed that \(h\) is constant, with value \(a_0\), on the
complement of these subdiscoids. The restriction of \(h\) to \(D_1\)
is given by a pair \((h_1, h_2)\), where \(h_2\) is the restriction of \(h\)
to a proper closed subdiscoid \(D_2\subset D_1\) and \(h_1\) is the restriction
of \(h\) to the open annuloid \(D_1\backslash D_2\). It is assumed that \(h_1\) is
an affine functions, whereas \(h_2\) is piecewise affine.

We allow \(D_2\) to be empty, in which case \(h_2\) is None and the domain of
\(h_1\) is an open discoid.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))





We can define the “valuative function” of a rational function:

sage: f = (x^2 - 2) / x
sage: h = valuative_function(X, f)
sage: h
piecewise affine function on the Berkovich line, with initial value 0





A piecewise affine function can be evaluated at any point.

sage: xi = X.point_from_discoid(x, 2)
sage: h(xi)
-1
sage: xi.v(f)
-1





A piecewise affine function defines an affininoid subdomain (the point where
the function takes nonnegative values).


sage: h.affinoid_domain()
Elementary affinoid defined by
v(x) >= 0
v(1/x) >= -1
<BLANKLINE>





	
affinoid_domain()

	Return the affinoid domain defined by this function.

OUTPUT:

the affinoid subdomain of the domain of this function \(h\),
defind by the inequality


\[h(xi) \geq 0.\]

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: h1 = valuative_function(X, 2*x)
sage: h1.affinoid_domain()
Elementary affinoid defined by
v(x) >= -1
<BLANKLINE>
sage: h2 = valuative_function(X, x*(x-1)/2)
sage: h2.affinoid_domain()
Affinoid with 2 components:
Elementary affinoid defined by
v(x - 1) >= 1
Elementary affinoid defined by
v(x) >= 1










	
berkovich_line()

	Return the Berkovich line on which this function is defined.






	
domain()

	Return the domain of this function.






	
find_next_points_with_value(a, xi0=None)

	Return the next point where this function takes a given value,
after a given point.

INPUT:


	a – a rational number


	xi0 (default: None) – a point in the domain of this function




OUTPUT: The list of all points on the nerf of this function


	at which this function takes the value \(a\),


	at which the function is not constant,


	which are strictly greater than \(\xi_0\), and


	which are minimal with this property.




If xi0 is None then the second condition is ignored.

NOTE:

In this form, the problem is not well defined. Note that the function
may be constant on pathes of the nerf. If this constant value is equal
to a, and xi0 lies on this path and ist not the terminal point, then
there is no minimal next point with value a.










	
find_next_zeroes(xi0=None)

	Return the next zeroes of this function after a given point.

INPUT:


	xi0 (default: None) – a point in the domain of this function




OUTPUT: The list of all points in the domain of this function which


	are zeroes of this function,


	are not in the constant locus of the function


	are greater or equal to \(\xi_0\), and


	are minimal with this property.




If xi0 is None then the third condition is ignored.






	
initial_point()

	Return the initial point of this function.

This is the minimal point of the domain of this function.






	
initial_value()

	Return the value of this function at the initial point.






	
is_constant()

	Return whether this function is constant.






	
is_in_domain(xi)

	Return whether a given point is in the domain of this function.






	
restrictions()

	Return the restrictions of this piecewise affine functions.

OUTPUT:

a list of pairs \((h_1,h_2)\), where \(h_1\) is an affine function which is
the restriction of this function \(h\) to an open subannuloid of the domain of
\(h\), and \(h_2\) is the restriction of \(h\) to the closed discoid which
the unique hole of the domain of \(h_1\).

If the domain of \(h_1\) is an open discoid (so there is no hole), then
\(h_2\) is None.

Together with the initial value, these restrictions define \(h\), because
\(h\) is constant on the complement of the domains of definitios of these
restrictions.










	
mclf.berkovich.piecewise_affine_functions.open_annuloid(xi0, xi1)

	Return an open annuloid.

INPUT:


	xi0, xi1 – points of type II on the Berkovich line \(X\)




OUTPUT:

the open annuloid \(A\) with boundary points \(xi_0\) and \(\xi_1\).
Note that \(\xi0\) and \(\xi_1\) are not contained in \(D\).

It is assumed that \(\xi_0 < \xi_1\). This means that \(A\) cannot contain the
Gauss point.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: xi0 = X.point_from_discoid(x-1, 1)
sage: xi1 = X.point_from_discoid(x+1, 2)
sage: open_annuloid(xi0, xi1)
domain defined by
v(x + 1) > 1
v(1/(x + 1)) > -2










	
mclf.berkovich.piecewise_affine_functions.open_discoid(xi0, xi1)

	Return an open discoid.

INPUT:


	xi0, xi1 – points on the Berkovich line \(X\)




OUTPUT:

the open discoid \(D\) with boundary point \(xi_0\) which contains \(\xi_1\).
Note that \(\xi0\) is not contained in \(D\).

It is assumed that \(\xi_0 < \xi_1\). This means that \(D\) cannot contain the
Gauss point.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: xi0 = X.point_from_discoid(x-1, 1)
sage: xi1 = X.point_from_discoid(x+1, 2)
sage: open_discoid(xi0, xi1)
domain defined by
v(x + 1) > 1










	
mclf.berkovich.piecewise_affine_functions.valuative_function(D, f, T=None, is_factored=False)

	A valuative function on a domain in the Berkovich line.

INPUT:


	D – a domain in the Berkovich line, or the Berkovich line itself


	
	f – a nonconstant rational function on \(X\), or

	a pair \((L, a_0)\), where \(L\) is a list of pairs \((g, a)\) consisting of


	a polynomial \(g\) (element of the function field on \(X\))


	a nonzero rational number \(a\)




and where \(a_0\) is a rational number







	T (default: None) – a Berkovich tree


	is_factored – a boolean (default: False)




OUTPUT:

If \(f\) is a rational function, then we create the valuative function
\(h\) on \(D\) defined as


\[h(\xi) := v_K(f(\xi))\]

If f is a pair \((L, a_0)\) as above, where \(L\) is a list of pairs
\((f_i, a_i)\), then the corresponding valuative function is defined as


\[h(\xi) := a_0 + \sum_i a_i v(f(\xi)).\]

The domain \(D\) must be either a standard closed discoid, or the the full
Berkovich line.

If the Berkovich tree \(T\) is given, then it is assumed that \(T\) is the
dendrite of the function \(h\) on \(D\). This means that the root of \(T\)
is the minimal point of \(D\), and that the restriction of \(h\) to the edges
of \(T\) are affine.

If is_factored is True then we assume that \(L\) is actually a list
of triples \((f, a, [\xi])\), where the \(f\) are irreducible polynomials,
and \([\xi]\) is the list of all points of type I which are zeroes of \(f\).
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Fake p-adic completions

p-adic fields as completions of absolute number fields

This module realizes a class FakepAdicCompletion which represents a \(p\)-adic
number field \(K\). Internally, the \(p\)-adic number field is represented by
a number field \(K_0\) together with a discrete valuation \(v_K\) on \(K_0\) which
extends the \(p\)-adic valuation \(v_p\) on \(\mathbb{Q}\), such that \(K\) is the
completion of \(K_0\) at \(v_K\).

Our main goal is to be able to compute weak \(p\)-adic Galois extensions of
\(p\)-adic number fields of large degree. We want to:


	compute efficiently with general extensions of \(\mathbb{Q}_p\) of high
ramification index (up to several hundreds)


	obtain provably correct results.




Both objectives seem difficult to reach with the existing functionality of
Sage. Therefore, we decided to represent a \(p\)-adic number field \(K\)
by a pair \((K_0, v_K)\), where \(K_0\) is an absolute number field and \(v_K\) is a discrete
valuation on \(K_0\) extending the`p`-adic valuation \(v_p\) on \(\mathbb{Q}\), for some
prime \(p\). A more systematic realization of this idea, Julian Rueth’s Sage package
completion,  should soon be part of Sage.

The first advantage of our approach (which adresses the first point above) is
that arithmetic in absolute number fields is reasonably fast in Sage.
Moreover, since there are many pairs \((K_0, v_K)\) which have the same completion,
we can choose \(K_0\) in such a way that certain operations we use heavily (like
evaluation of \(v_K\)) can be done very efficiently. At the moment, we choose
\((K_0,v_K)\) such that


	\(v_K\) is the unique extension of \(v_p\) to \(K_0\),


	\(K_0/\mathbb{Q}\) is generated by a uniformizer \(\pi_K\) of \(v_K\).




For instance, these assumptions allow us to easily write down a \(p\)-integral
basis for \(K_0/\mathbb{Q}\) which is also an integral basis for \(K/\mathbb{Q}_p\).
We can also choose \(K_0\) such that the defining polynomial has small coefficients.

The second advantage is that, since for most of our needs we do not really need
the \(p\)-adic number field \(K\) explicitly, we can instead work with the
henselization \(K^h\) of \((K_0,v_K)\) which is an exact field: an element of \(K^h\)
is uniquely determined by a finite amount of data, namely its minimal polynomial
over \(\mathbb{Q}\) and a sufficiently precise approximation by an element of \(K_0\).
Moreover, \(K^h\) only depends on the \(p\)-adic number field \(K\) but not
on our particular choice of \(K_0\).

The main drawback of our approach is that morphisms between two \(p\)-adic number
fields \(K\) and \(L\) are somewhat difficult to realize: the problem is
that for our particular choice of the underlying number fields \(K_0\) and \(L_0\),
there may not exist a nonzero morphism \(K_0\to L_0\) even if \(K\) is a subfield of
\(L\).

AUTHORS:


	Stefan Wewers (2017-08-24): initial version




EXAMPLES:

TO DO:


	one should try to always find a totally ramified extension (but it is not
so clear how to do that)





	
class mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion(K0, vK)

	Bases: SageObject

Return the completion of a number field at a \(p\)-adic valuation.

INPUT:


	K0 – an absolute number field,


	vK – a \(p\)-adic valuation on K0.




We assume that \(v_K\) is the unique extension of the \(p\)-adic extension \(v_p\)
on \(\mathbb{Q}\) to \(K_0\), and that the standard generator \(\pi_K\) of
\(K_0/\mathbb{Q}\) is a uniformizer for \(v_K\). If this is not the case, an
error is raised.


	
absolute_degree()

	Return the degree of this p-adic field as an extension of \(\mathbb{Q}_p\).






	
absolute_inertia_degree()

	Return the absolute inertia degree of this p-adic extension.






	
absolute_ramification_degree()

	Return the absolute ramification degree of this p-adic extension.






	
approximate_factorization(f, only_ramified_factors=False)

	Return a list of approximate irreducible factors of f.

INPUT:


	f – a squarefree univariate polynomial over \(K_0\), the number field
underlying this p-adic field \(K\)


	only_ramified_factors – boolean (default: False)




OUTPUT: a list of pairs \((g,e)\), where \(g\) is an approximate irreducible
factor of \(f\) over \(K\) and \(e>=1\).
The pairs \((g,e)\) are in bijection with the irreducible factors of \(f\) over
\(K\). If \((g,e)\) corresponds to the irreducible factor \(f_i' then \)
and \(f_i\) generate the same extension of \(K\). In particular, \(f_i\) and
\(g\) have the same degree. Moreover \(e\) is the ramification degree of the
extension of \(K\) generated by \(g\) (or \(f_i\)).

If only_ramified_factors is True then all pairs \((g,e)\) with
\(e=1\) are omitted.

At the moment we have to assume that \(f\) is monic and integral
with respect to \(v_K\) (and hence all roots have nonnegative valuation).






	
approximate_irreducible_factor(f)

	Return one approximate irreducible factor of a given polynomial.

INPUT:


	f – a squarefree and integral polynomial over the number field
K_0 underlying this \(p\)-adic number field \(K\).




Output:

Either a monic poynomial \(g\) over \(K_0\) which is an approximate irreducible
factor of \(f\), or a positive integer \(e\).

The polynomial \(g\) is then irreducible over \(K\) and the extension of \(K\)
generated by adjoining a root of \(g\) is contained in the splitting field
of \(f\).

If an integer \(e\) is retuned, then any tame extension of \(K\) of ramification
degree \(e\) is a weak splitting field of \(f\) over \(K\).

TODO:

One should also allow a list of polynomials as input.






	
base_change_matrix(integral_basis='standard', precision=20)

	Return the base change matrix to an integral basis.

INPUT:


	integral_basis – a string (default: “standard”)


	precision – a positive integer




OUTPUT:

An invertible \((n,n)\)-matrix \(S\) over \(\mathbb{Q}\) with the following
property: for an element \(a\) of \(K_0\), the vector S*a.vector()
gives the representation of \(a\) as a linear combination of integral_basis.

TODO:


	clarify the role of  precision in this function









	
base_valuation()

	Return the \(p\)-adic valuation.






	
characteristic_polynomial(f, g)

	Return the characteristic polynomial of an element of a simple extension
of \(K\).

INPUT:


	f, g – univariate monic polynomials over \(K\)




OUTPUT:

the characteristic polynomial of the element \(\beta=g(\alpha)\) with
respect to the relative extension \(L=K[\alpha]/K\), where \(\alpha\) is
a formal root of \(f\). Of course, \(L\) is a field only if \(f\) i irreducible,
but this is not checked, and no error would occur within this function if
\(f\) is reducible.






	
characteristic_polynomial_mod(f, N)

	Return the absolute characteristic polynomial of the root of a given
polynomial, modulo \(p^N\).

INPUT:


	f – a monic \(p\)-integral and irreducible polynomial over the
underlying number field \(K\)


	N – a positive integer




OUTPUT:

the absolute characteristic polynomial of a root of \(f\), modulo \(p^N\).






	
degree()

	Return the degree of this p-adic field as an extension of \(\mathbb{Q}_p\).






	
element_from_vector(v, integral_basis='standard')

	Return the element corresponding to a given vector.

INPUT:


	v – a vector of rational numbers with length equal to the degree of \(K\)


	integral_basis – a string (default: “standard”)




OUTPUT:

the linear combination of the canonical integral basis of \(K\)
corresponding to \(v\).






	
extension(f, embedding=False)

	Return a \(p\)-adic extension such that f has a root in an unramified
extension of it.

INPUT:


	f – a monic univariate polynomial over the number field \(K_0\)
underlying this p-adic extension \(K\), which is irreducible over \(K\).


	embedding – a boolean (default: False)




OUTPUT:

A \(p\)-adic extension \(L\) of \(K\) such that f has a root
in an unramified extension of \(L\), or (if embedding is True)
the pair \((L,\phi)\), where \(\phi\) is the canonical embedding of
\(K\) into \(L\).

If \(K_0\) is the underlying number field, then \(f\in K_0[x]\) is irreducible
over the completion \(K\); the resulting finite extension \(L/K\)
is a subextension of the extension of \(K\)


\[K[x]/(f).\]

However, the number field \(L_0\) underlying \(L\) is in general not
equal to \(K_0[x]/(f)\), and there may not exist any embedding of \(K_0\)
into \(L_0\).






	
generator()

	Return the standard generator of this p-adic extension.






	
inertia_degree()

	Return the absolute inertia degree of this p-adic extension.






	
integral_basis_of_unramified_subfield(precision=5)

	Return an (approximate) integral basis of the maximal unramified subfield.

INPUT:


	precison – a positive integer




OUTPUT:

A list \(\alpha=(\alpha_0,\ldots,\alpha_{m-1})\) of elements of \(K_0\)
which approximate (with precision \(p^N\) an integral basis of the
maximal unramified subfield.






	
is_Qp()

	Return True if this is the padic-completion of the field of rational numbers.






	
is_approximate_irreducible_factor(g, f, v=None)

	Check whether g is an approximate irreducible factor of f.

INPUT:


	g: univariate polynomial over the underlying number field \(K_0\)


	f: univariate polynomial over \(K_0\)


	v: a MacLane valuation on \(K_0[x]\) approximating g, or None;
here approximating means that LimitValuation(v, g) is well-defined.




Output: True if g is an approximate irreducible factor of f, i.e.
if g is irreducible over \(K\) and Krasner’s condition is satified,
If true, the stem field of g over \(K\) is a subfield of the
splitting field of f over \(K\).

Her we say that Krasner’s Condition holds if for some root \(\alpha\)
of \(g\) there exists a root \(\beta\) of \(f\) such that \(\alpha\) is \(p\)-adically
closer to \(\beta\) than to any other root of \(g\).

Note that if \(\deg(g)=1\) then the condition is nontrivial, even though
the conclusion from Krasner’s Lemma is trivial.






	
matrix(a, integral_basis='standard')

	Return the matrix representing the element a.

INPUT:


	a – an element of the underlying number field of this p-adic extension


	integral_basis – a string (default: “standard”)




OUTPUT:

The matrix representing the element \(a\) of the underlying number field
\(K\), with respect to the canonical \(p\)-integral basis.






	
minpoly_over_unramified_subextension(N)

	Return the minimal polynomial of the standard uniformizer of this \(p\)-adic
number field \(K\), relative to the maximal unramified subfield,
as a polynomial over \(K\) itself.

INPUT:


	N – a positive integer




OUTPUT:

A polynomial \(P\) over the number field \(K_0\) underlying \(K\). \(P\) is an
approximation (with precision N) of the minimal polynomial
of the standard uniformizer \(\pi\) of \(K\), relative to the maximal
unramified subfield \(K_{nr}\) of \(K\). Moreover, \(P(\pi)=0\) holds exactly.

If the approximation is sufficient (note: this still has to be made
precise) then \(P\) has a root \(\pi_1\) in \(K\) which is also a uniformizer of \(K\), and \(K = K_{nr}[\pi_1]\).

NOTE:

To check that \(P\) is ok, it should suffice to see that \(P\) is “Eisenstein
over \(K_nr\)” and has a root in \(K\). Unfortunately, the coefficient will
likely not lie in \(K_{nr}\) exactly, and so this criterion probably makes
no sense.






	
normalized_valuation()

	Return the normalized valuation on this p-adic field.

Here normalized means that the valuation takes the value \(1\) on a
uniformizer.






	
number_field()

	Return the number field representing this p-adic extension.






	
p()

	Return the prime \(p\).






	
polynomial()

	Return the minimal polynomial of the standard generator of \(K\).






	
ramification_degree()

	Return the absolute ramification degree of this p-adic extension.






	
ramified_extension(n, embedding=False)

	Return a purely ramified extension with given ramification degree.

INPUT:


	n – a positive integer


	embedding – a boolean (default: False)




OUTPUT:

A finite extension \(L\) of this p-adic field \(K\) such that \(L/K\) is
purely ramified, of degree n. If embedding is True then the
pair \((L,\phi)\) is returned, where \(\phi:K\to L\) is the canonical embedding.






	
reduce(a, N)

	Return an approximation of a which is reduced modulo \(p^N\).

INPUT:


	a – an element of the underlying number field \(K\)


	N – a positive Integer




OUTPUT: an element \(\tilde{a}\) of \(K\) which is congruent to \(a\) modulo \(p^N\),
and whose representation in terms of the canonical integral basis of
\(K\) has coefficents of the form \(c/p^m\), with \(0\leq  c < p^N\)
and \(m\geq 0\).






	
reduce_rational_number(a, N)

	Return an approximation of a which is reduced modulo \(p^N\).

INPUT:


	a – a rational number


	N – a positive Integer




OUTPUT: an element \(\tilde{a}\) of \(\mathbb{Q}\) which is congruent to
\(a\) modulo \(p^N\), of the form \(c/p^m\), with \(0\leq  c < p^N\)
and \(m\geq 0\).






	
simplify_irreducible_polynomial(f)

	Return a simpler polynomial generating the same extension.

INPUT:


	f – an univariate polynomial over the underlying number field \(K\)
which is integral and irreducible over \(\hat{K}\)




OUTPUT:

A polynomial \(g\) over \(K\) which is irreducible over \(\hat{K}\),
and which generates the same extension of \(\hat{K}\) as \(f\).






	
subfield(alpha, e)

	Return a subfield approximated by a given element.

INPUT:


	alpha – an element of the number field \(K_0\) underlying \(K\)


	e – a divisor of the absolute degree of \(K_0\)




OUTPUT:

A \(p\)-adic number field \(L\) with ramification index \(e\) which has an
embedding into \(K\), or None if no such field can be found.

If \(L\) is a subfield of \(K\) with ramification index \(e\) and \(\alpha_i\)
is a sequence of element of \(K_0\) converging to a generator of \(L\), then
calling K.subfield(alpha_i,e) will find the subfield \(L\) for \(i\)
sufficiently large.

TODO:

One easy improvement could be to not try to embed L into K after every
MacLane step, but only for the last step before the degree of v jumps.






	
uniformizer()

	Return the standard unifomizer of this p-adic extension.






	
valuation()

	Return the valuation on the underlying number field of this p-adic extension.






	
vector(a, integral_basis='standard')

	Return the vector corresponding to an element of the underlying number field.

INPUT:


	a – an element of the number field \(K_0\) underlying this \(p\)-adic number field


	integral_basis – a string (default: “standard”)




OUTPUT:

the vector of coefficients corresponding to the representation
of \(a\) as a linear combination of an integral basis of \(K\).

If integral_basis is “standard” then we use the integral basis


\[p^\lceil i/e \rceil \pi^i, i=0,\ldots,n,\]

where \(\pi\) is the standard uniformizer of \(L\), \(e\) is the absolute
ramification degree and \(n\) the absolute degree of \(K\).

If it is mixed then we use  the integral basis


\[\pi^i \alpha_j,   i=0,\ldots,e-1, j=0,\ldots,n/e-1,\]

where \(\alpha_j\) is an approximation of an integral basis of the maximal
unramified subfield.






	
weak_splitting_field(F)

	Return the weak splitting field of a list of polynomials.

INPUT:


	F – a polynomial over the underlying number field \(K_0\),
or a list of polynomials




OUTPUT:

A weak splitting field \(L/K\) of F.

This means that \(F\) splits over an unramified extension of \(L\).

Note:

This function works at the moment only for the base field \(\mathbb{Q}_p\).

TODO:

The following trick should give a massive improvement for large examples:
Instead of calling K.approximate_factorization(F) one should calling
a new version of K.approximate_irreducible_factor(F, *options*).

The function approximate_irreducible_factor(..) would do a
MacLane approximation with require_maximal_degree=True. From the
resulting v’s one can then select (according to the options) one which,
after enough MacLane steps, gives an approximate irreducible factor.

The point is that the test for being an approximate factor seems to be
the most time consuming for large examples. A further speedup could be
obtained by


	either finding a more clever way to test,


	or by simply doing several MacLane steps before testing.




The options should be set such that factors are chosen accoring to the
following rules:


	one prefers purely ramified factors over factors with inertia


	one prefers purely wild factors over mixed factors


	one prefers mixed factors over tame factors




Note that for tame factors the inertia may be ignored, hence they
may be considered as purely ramified. However, it is better to leave
them until the end, because doing a tame extension is almost trivial.
It is not clear to me whether a purely wild factor with inertia is better
than a mixed unramified factor.

EXAMPLES:

The following example created an error in a previous version

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: Q2 = FakepAdicCompletion(QQ, v_2)
sage: R.<x> = QQ[]
sage: f = x^12 + 192*x^9 - 5352*x^6 + 33344*x^3 - 293568
sage: L = Q2.weak_splitting_field(f)
sage: L.ramification_degree()
4





Check that non-integral polynomials are allowed as well

sage: Q2.weak_splitting_field(2*x^2 + 1)
2-adic completion of Number Field in pi2 with defining polynomial x^2 + 2

















          

      

      

    

  

    
      
          
            
  
Fake \(p\)-adic embeddings

Let \(K\) and \(L\) be \(p\)-adic number fields. In this module we define a class
FakepAdicEmbedding whose objects represent embeddings \(\phi:K\to L\) over
\(\mathbb{Q}_p\).

Here the \(p\)-adic number fields \(K\) and \(L\) are objects of the
class FakepAdicCompletion. This means that \(K\) and \(L\) represented as pairs
\((K_0,v_K)\) and \((L_0,v_L)\), where e.g. \(K_0\) is a number field and \(v_K\) a
\(p\)-adic valuation on \(K_0\) such that \(K\) is the completion of \(K_0\) at \(v_K\).
In fact, we do not work with actual \(p\)-adic numbers.

Given an embedding \(\phi:K\to L\), there need not exist any embedding \(K_0\to L_0\)
of the underlying number fields. Therefore, the embedding \(\phi\) has to be
construced in a rather indirect way. Recall that \(K_0\) and \(L_0\) are absolute
number fields generated by prime elements \(\pi_K\) and \(\pi_L\) over \(\mathbb{Q}\)
(with respect to \(v_K\) and \(v_L\)). So an embedding \(\phi:K\to L\) is uniquely
determined by a root of the absolute minimal polynomial \(P_K\) of \(\pi_K\) over
\(\mathbb{Q}\) in \(L\). Such a root may be represented by a limit pseudo valuation
\(v\) on the polynomial ring \(L_0[x]\) with \(v(P_K)=\infty\).

AUTHORS:


	Stefan Wewers (2017-08-30): initial version




EXAMPLES:

TO DO:


	
class mclf.padic_extensions.fake_padic_embeddings.FakepAdicEmbedding(K, L, approximation=None)

	Bases: SageObject

Return an embedding of two \(p\)-adic number fields.

INPUT:


	K, L – two \(p\)-adic number fields, given as objects of
FakepAdicCompletion


	approximation - an approximation of the desired emdding, or None
(default: None)




OUTPUT: an embedding of \(K\) into \(L\) which is approximated by approximation,
or None if no such embedding exists.

WARNING: to return None doesn’t make sense, because __init__ returns
an instance of FakepAdicEmbedding.

Internally, the embedding \(\phi\) is represented by a limit pseudo valuation
\(v\) on \(L_0[x]\) such that \(v(P_K)=\infty\). Here \(K_0\) and \(L_0\) are the
algebraic number fields underlying \(K\) and \(L\) and \(P_K\) is the minimal
valuation of the canonical generator of \(K_0\) over \(\mathbb{Q}\).

An approximation of \(\phi\) is any discrete valuation \(v_0\) on \(L_0[x]\)
which approximates \(v\). This may actually be \(v\) itself.

Note that the resulting embedding may not be unique, in which case an
arbitrary embedding is chosen.


	
eval(alpha, precision=2)

	Evaluate this embedding on an element of this domain, or on a polynomial.

INPUT:


	alpha – an element of the domain of this embedding, or a polynomial
over the underlying number field of the domain


	precision – a positive integer, or None (default: None)




OUTPUT:

the image of alpha under this embedding \(\phi:K\to L\), with the
guaranteed precision precision.

The element \(\alpha\) of \(K\) may be given as an element of the number
field \(K_0\) underlying \(K\). In this case the image \(\phi(\alpha)\)
will be given as an element of the number field \(L_0\) underlying \(L\),
which is an approximation of the true value of \(\phi(\alpha)\) modulo \(p^N\),
where \(N\) is the guaranteed precision. If precision is given then
\(N\) is larger or equal to precision. Otherwise the internal precision
of \(\phi\) is used (which only guarantees that \(\phi\) is uniquely determined).

The element \(\alpha\) in \(K\) may also be given by a …






	
improve_approximation(N=None)

	Improve the underlying approximation of this embedding.

INPUT:


	N – a positive integer, or None (default: None)




The effect of this method is that the underlying approximation of the
limit valuation representing this embedding is improved. If N
is given then this improvement will guarantee that for any integral
element \(\alpha\) of the number field \(K_0\) underlying the domain \(K\)
of this embedding, the value of self.eval(alpha) will agree with
the true value \(\phi(\alpha)\) modulo \(p^N\).













          

      

      

    

  

    
      
          
            
  
Fake \(p\)-adic extensions

Let \(K\) be a \(p\)-adic number field. For our project we need to be able to
compute with Galois extensions \(L/K\) of large degree.

At the moment, computations with general extensions of \(p\)-adic fields of large
degree are still problematic. In particular, it seems difficult to obtain results
which are provably correct. For this reason we do not work which \(p\)-adic numbers at all.
Instead, we use our own class FakepAdicCompletion, in which a \(p\)-adic number
field is approximated by a pair \((K_0, v_K)\), where \(K_0\) is a suitable number field
and \(v_K\) is a \(p\)-adic valuation on \(K_0\) such that \(K\) is the completion
of \(K_0\) at \(v_K\).

In this module we define a class FakepAdicExtension, which realizes a finite
extension \(L/K\) of \(p\)-adic number fields. Both fields \(K\) and \(L\) are realized
as objects in the class FakepAdicCompletion, the embedding \(K\to L\) as
an object of FakepAdicEmbedding.

AUTHORS:


	Stefan Wewers (2017-08-30): initial version




EXAMPLES:

TO DO:


	the method polynomial should give an exact result, namely a object of
some class FakepAdicPolynomial





	
class mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension(phi)

	Bases: SageObject

Return the extension of \(p\)-adic number fields corresponding to an embedding.

INPUT:


	phi – an embedding of \(p\)-adic number fields




OUTPUT:  the extension \(L/K\) where \(K\) is the domain and \(L\) the target of \(phi\)


	
base_field()

	Return the base field.






	
degree()

	Return the degree of the extension.






	
extension_field()

	Return the extension field.






	
inertia_degree()

	Return the inertia degree of the extension.






	
normalized_valuation()

	Return the normalized valuation.






	
p()

	Return the prime \(p\).






	
polynomial()

	Return the minimal polynomial of a generator of this extension.

OUTPUT:

A monic, integral and irreducible polynomial \(P\) over the number field
underlying the base field of this extension.

Let \(L/K\) be our extension of \(p\)-adic number fields. Then \(P\) is a
monic polynomial over the number field \(K_0\) underlying \(K\), of degree
\([L:K]\), with the following properties:


	\(P\) is integral and irreducible over \(K\)


	\(P\) is the minimal polynomial of a prime element \(\pi\) of \(L\) such
that \(L = K[\pi]\).




Note, however, that \(\pi\) is in general not equal to the canonical absolute
generator \(\pi_L\) of \(L/\mathbb{Q}_p\). Moreover, in general no root of \(P\)
is contained in the number field \(L_0\) underlying \(L\).

TODO:

\(P\) should be naturally equipped with






	
ramification_degree()

	Return the ramification degree of the extension.






	
subextension(alpha, d)

	Return a subextension of given degree, containing (approximately) a given element.

INPUT:


	alpha – an (approximate) element of this extension field


	d – a positive integer




OUTPUT:

a subextension of degree \(d\) which (approximately) contains alpha,
or None if no such subextension exists.

Let \(L/K\) be the given extension of \(p\)-adic number fields. Then we are
looking for a subextension \(K \subset M \subset L\) such that
\([M:K] = d\). If \(\alpha\) is given exactly, then we demand that \(\alpha\in M\).
If \(\alpha\) is given by an approximation \((\alpha_0,N)\) then we demand
that there exists an element \(\alpha_1\in M\) such that


\[v_M(\alpha_1-\alpha_0) \geq N`.\]

Here the valuation \(v_M\) is normalized such that \(v_M(p)=1\).






	
valuation()

	Return the valuation of the extension.













          

      

      

    

  

    
      
          
            
  
Weak p-adic Galois extensions

Let \(K\) be a \(p\)-adic number field. For our project we need to be able to
compute with Galois extensions \(L/K\) of large ramification degree.
For instance, we need to be able to compute the breaks of the ramification
filtration of the Galois group of \(L/K\), as well as the corresponding
subfields.

At the moment, computations with large Galois extensions of \(p\)-adic fields are
still problematic. In particular, it seems difficult to obtain results which are
provably correct. For this reason we do not work which \(p\)-adic numbers at all.
Instead, we use our own class FakepAdicCompletion, in which a \(p\)-adic number
field is approximated by a pair \((K_0, v_K)\), where \(K_0\) is a suitable number field
and \(v_K\) is a \(p\)-adic valuation on \(K_0\) such that \(K\) is the completion
of \(K_0\) at \(v_K\).

Let \(L/K\) be a finite field extension. We say that \(L/K\) is a weak Galois
extension if the induced extension  \(L^{nr}/K^{nr}\) is Galois. Given a
polynomial \(f\) in \(K[x]\), we say that \(L/K\) is a weak splitting field for \(f\)
if \(f\) splits over \(L^{nr}\).

Given a weak Galois extension \(L/K\), we have canonical isomorphisms between the
following groups:


	the Galois group of \(L^{nr}/K^{nr}\),


	the inertia subgroup of the Galois closure of \(L/K\),




Moreover, this isomorphism respects the filtrations by higher ramification
groups.

If \(L/K\) is totally ramified then the degree of \(L/K\) is equal to the degree
of \(L^{nr}/K^{nr}\), which is equal to the order of the inertia subgroup of the
Galois closure of \(L/K\). Therefore, our approach allows us to fully
understand the inertia group of a Galois extension of \(p\)-adic fields, while
keeping the degree of the field extensions with which one works as small as
possible.

Our method can also be used to work with approximations of the subfields
of a \(p\)-adic Galois extension corresponding to the higher ramification
subgroups.

For \(u\geq 0\) we let \(L^{sh,u}\) denote the subfield of \(L^{sh}/K^{sh}\)
corresponding to the \(u\) th filtration step of the Galois group of
\(L^{sh}/K^{sh}\). Then the completion of \(L^{sh,u}\) agrees with the maximal
unramified extension of the subextension \(\hat{L}^u\) of the Galois closure
\(\hat{L}/\hat{K}\) corresponding to the \(u\) th ramification step. Moreover,
there exists a finite extensions \(L^u/K\), together with an extension \(v_{L^u}\)
of \(v_K\) to \(L^u\) such that


	the strict henselization of \((L^u, v_{L^u})\) is isomorphic to \(L^{sh,u}\),


	the completion of \((L^u, v_{L^u})\) agrees with \(\hat{L}^u\), up to a finite
unramified extension.




Note that \(L^u\) will in general not be a subfield of \(L\) (and not even of the
Galois closure of \(L/K\)).

In this module we define a class WeakPadicGaloisExtension, which realizes an
approximation of a \(p\)-adic Galois extension, up to unramified extensions.

AUTHORS:


	Stefan Wewers (2017-08-06): initial version




EXAMPLES:

This example is from the “Database of Local Fields”:

sage: from mclf import *
sage: v_3 = QQ.valuation(3)
sage: Q_3 = FakepAdicCompletion(QQ, v_3)
sage: R.<x> = QQ[]
sage: f = x^6+6*x^4+6*x^3+18
sage: L = WeakPadicGaloisExtension(Q_3, f)
sage: L.upper_jumps()
[0, 1/2]





TO DO:


	
class mclf.padic_extensions.weak_padic_galois_extensions.WeakPadicGaloisExtension(K, F, minimal_ramification=1)

	Bases: mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension

Return the weak p-adic splitting field of a polynomial.

INPUT:


	K – a \(p\)-adic number field


	F – a polynomial over the number field underlying \(K\), or a list of
such polynomials


	minimal_ramification – a positive integer (default: 1)




OUTPUT: the extension \(L/K\), where \(L\) is a weak splitting field of F
whose ramification index over \(K\) is a multiple of minimal_ramification.

NOTE:

For the time being, F has to be defined oover \(\mathbb{Q}\),
and minimal ramification has to be prime to \(p\).


	
factors_of_ramification_polynomial(precision=10)

	Return the factorization of the ramification polynomial into factors
with fixed slope.

OUTPUT: a dictionary factors such that \(g=\) factors[s]
is the maximal factor of the ramification polynomial \(G\) whose Newton
polygon has a single slope \(s\). We omit the factor with slope \(s=-1\).






	
lower_jumps()

	Return the upper jumps of the ramification filtration of this extension.






	
ramification_filtration(upper_numbering=False)

	Return the list of ramification jumps.

INPUT:


	upper_numbering – a boolean (default: False)




OUTPUT: an ordered list of pairs \((u, m_u)\), where \(u\) is a jump in the
filtration of higher ramification groups and \(m_u\) is the order of the
corresponding subgroup. The ordering is by increasing jumps.

If upper_numbering is False, then the filtration is defined as
follows. Let \(L/K\) be a Galois extension of \(p\)-adic number fields, with
Galois group \(G\). Let \(\pi\) be a prime element of \(L\), and let \(v_L\)
denote the normalized valuation on \(L\) (such that \(v_L(\pi)=1\)). For
\(u\geq 0\), the ramification subgroup \(G_u\) consists of all element
\(\sigma\) of the inertia subgroup \(I\) of \(G\) such that


\[v_L(\sigma(\pi) - \pi) \geq i + 1.\]

In particular, \(I=G_0\). An integer \(u\geq 0\) is called a “jump” if
\(G_{u+1}\) is strictly contained in \(G_u\). Note that this is equivalent
to the condition that there exists an element \(\sigma\in G\) such that


\[v_L(\sigma(\pi) - \pi) = u + 1.\]

It follows that the ramification filtration can easily be read off from
the Newton polygon (with respect to \(v_L\)) of the polynomial


\[G := P(x + \pi)/x,\]

where \(P\) is a minimal polynomial of \(\pi\) over \(K\).  The polynomial
\(G\) is called the ramification polynomial of the Galois extension \(L/K\).






	
ramification_polygon()

	Return the ramification polygon of this extension.

The ramification polygon of a weak Galois extension \(L/K\)
of \(p\)-adic number fields is the Newton polygon of the
ramification polynomial, i.e. the polynomial


\[G := P(x+\pi)/x\]

where \(\pi\) is a prime element of \(L\) which generates the extension
\(L/K\) and \(P\) is the minimal polynomial of \(\pi\) over \(K^{nr}\), the
maximal unramified subextension of .

The (strictly negative) slopes of the ramification polygon (with respect
to the valuation \(v_L\) on \(L\), normalized such that \(v_L(\pi_L)=1\))
correspond to the jumps in the filtration of higher ramification groups,
and the abscissae of the vertices of the corresponding vertices are equal
to the order of the ramification subgroups that occur in the filtration.

NOTE:


	For the time being, we have to assume that \(K=\mathbb{Q}_p\). In this
case we can choose for \(\pi\) the canonical generator of the absolute
number field \(L_0\) underlying \(L\).









	
ramification_polynomial(precision=20)

	Return the ramification polynomial of this weak Galois extension.

The ramification polynomial is the polynomial


\[G := P(x+\pi)/x\]

where \(\pi\) is a prime element of \(L\) which generates the extension
\(L/K\) and \(P\) is the minimal polynomial of \(\pi\) over \(K^{nr}\), the
maximal unramified subextension of .

NOTE:


	For the time being, we have to assume that \(K=\mathbb{Q}_p\). In this
case we can choose for \(\pi\) the canonical generator of the absolute
number field \(L_0\) underlying \(L\).









	
ramification_subfield(u)

	Return the ramification subfield corresponding to a given lower jump.

Here a nonnegative integer \(u \geq 0\) is called a lower jump for the
weak \(p\)-adic Galois extension \(L/K\)  if \(u\) is a jump in the filtration
\((G_u)_{u\geq 0}\) of the Galois group \(G = Gal(L^{nr}/K^{nr})\) of the
induced extension \(L^{nr}/K^{nr}\). This is equivalent to the following
condition: there exists an element \(g\in G\), such that


\[v_L(g(\pi_L)-\pi_L) = u + 1.\]

Here \(v_L\) is the valuation of the extension field \(L\) and \(\pi_L\)
is a prime element of \(L\). We normalize \(v_L\) such that \(v_L(\pi_L)=1\).






	
ramification_subfields(precision=1)

	Return the ramification subfields of this weak Galois extension.

The set of all subfields is returned as dictionary, in which the
keys are the lower jumps and the values are the corresponding subfields,
given as extension of the base field.






	
upper_jumps()

	Return the lower jumps of the ramification filtration of this extension.













          

      

      

    

  

    
      
          
            
  
Semistable reduction of curves



	Semistable reduction of a smooth projective curve over a local field

	Admissible reduction of curves

	Semistable models of superelliptic curves of degree \(p\)

	Reduction trees: a data structure for semistable reduction of covers of the projective line.









          

      

      

    

  

    
      
          
            
  
Semistable reduction of a smooth projective curve over a local field

Let \(K\) be a field and \(v_K\) a discrete valuation on \(K\). We let \(\mathcal{O}_K\)
denote the valuation ring of \(v_K\) and \(\mathbb{F}_K\) the residue field.

We consider a smooth projective  curve \(Y\) over \(K\). Our goal is to compute the
semistable reduction of \(Y\) at \(v_K\) and to extract nontrivial arithmetic
information on \(Y\) from this.

Let us define what we mean by ‘semistable reduction’ and by ‘computing’.
By the famous result of Deligne and Mumford there exists a finite, separable
field extension \(L/K\),  an extension \(v_L\) of \(v_K\) to \(L\) (whose valuation ring
we call \(\mathcal{O}_L\)) and an \(\mathcal{O}_L\)-model \(\mathcal{Y}\) of \(Y_L\) whose special fiber
\(\bar{Y}:=\mathcal{Y}_s\) is reduced and has at most ordinary double points as
singularities. We call \(\mathcal{Y}\) a semistabel model and \(\bar{Y}\) a semistable
reduction of \(Y\).

Let us assume, for simplicity, that \(K\) is complete with respect to \(v_K\). Then
the extension \(v_L\) to \(L\) is unique and \(L\) is complete with respect to \(v_L\).
Then we we may moreover assume that \(L/K\) is a Galois extension and that the
tautological action of the Galois group of \(L/K\) extends to the
semistable model \(\mathcal{Y}\). By restriction we obtain an action of \({\rm Gal}(L/K)\)
on \(\bar{Y}\). (In practise we mostly work with fields \(K\) which are not complete.
To make sense of the above definitions, one simply has to replace \(K\) by its completion.)

When we say the semistable reduction of \(Y\) we actually mean  the extension
\(L/K\), the \(\mathbb{F}_L\)-curve \(\bar{Y}\) and the action of the former
on the latter.

Note that neither \(L/K\) nor \(\bar{Y}\) are unique, but their nonuniqueness is in
a sense inessential. For instance, one may replace \(L\) by a larger Galois
extension \(L'/K\); as a consequence the curve \(\bar{Y}\) gets replaced by its
base extension to the residue field of \(L'\). Also, certain blowups of the semistable
model \(\mathcal{Y}\) may result in a new semistable model \(\mathcal{Y}\) with special
fiber \(\bar{Y}'\). The only difference between \(\bar{Y}\) and \(\bar{Y}'\) are some
new irreducible components, which are ‘contractible’, i.e. they are smooth of
genus \(0\) and meet the rest of \(\bar{Y}'\) in at most two points.

At the moment, we do not have an effective method at our disposal to compute the
semistable reduction of an arbitrary curve \(Y\), but only a set of methods which
can be applied for certain classes of curves. We always assume that the
curve \(Y\) is given as a finite separable cover


\[\phi: Y \to X,\]

where \(X=\mathbb{P}^1_K\) is the projective line over \(K\). There are two main
cases that we can handle:


	the order of the monodromy group of \(\phi\) (i.e. the Galois group of its
Galois closure) is prime to the residue characteristic of the valuation \(v_K\).


	\(\phi\) is a Kummer cover of degree \(p\), where \(p\) is the (positive) residue
characteristic of \(v_K\)




In the first case, the method of admissible reduction is available. In the
second case, the results of [We17] tell us what to do. In both cases, there
exists a normal \(\mathcal{O}_K\)-model \(\mathcal{X}_0\) of \(X=\mathbb{P}^1_K\)
(the inertial model) whose normalization in the function field of \(Y_L\) is a
semistable model, for a sufficiently large finite extension \(L/K\). Once the
right inertial model is defined, the method for computing the semistable model
\(\mathcal{Y}\) and its special fiber \(\bar{Y}\) are independent of the particular
case (these computations are done within the Sage class ReductionTree).

In this module we define a base class SemistableModel. An object in this class
is initialized by a pair \((Y,v_K)\) , where \(Y\) is a smooth projective curve over
a field \(K\) and \(v_K\)  is a discrete valuation on \(K\). The class provides access
to functions which compute and extract information from the semistable reduction
of \(Y\) with respect to \(v_K\).


	We17

	S. Wewers, Semistable reduction of superelliptic curves of degree p, preprint, 2017.






Note

For the time being, we have to assume that \(K\) is a number field.
Then \(v_K\) is the valuation associated to a prime ideal of \(K\) (i.e. a maximal
ideal of its ring of integers).



AUTHORS:


	Stefan Wewers (2018-5-16): initial version




EXAMPLES:

We compute the stable reduction and the conductor exponent of the Picard curve


\[Y:\; y^3 = x^4 - 1.\]

at the primes \(p=2,3\):

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^4-1, 3)
sage: Y
superelliptic curve y^3 = x^4 - 1 over Rational Field
sage: Y2 = SemistableModel(Y, v_2)
sage: Y2.is_semistable()
True





The stable reduction of \(Y\) at \(p=2\) has four components, one of genus \(0\) and
three of genus \(1\).

sage: [Z.genus() for Z in Y2.components()]
[0, 1, 1, 1]
sage: Y2.components_of_positive_genus()
[the smooth projective curve with Function field in u2 defined by u2^3 + x^4 + x^2,
 the smooth projective curve with Function field in u2 defined by u2^3 + x^2 + x,
 the smooth projective curve with Function field in u2 defined by u2^3 + x^2 + x + 1]
sage: Y2.conductor_exponent()
6
sage: v_3 = QQ.valuation(3)
sage: Y3 = SemistableModel(Y, v_3)
sage: Y3.is_semistable()
True
sage: Y3.components_of_positive_genus()
[the smooth projective curve with Function field in u2 defined by u2^3 + u2 + 2*x^4]
sage: Y3.conductor_exponent()
6






	
class mclf.semistable_reduction.semistable_models.SemistableModel(Y, vK, check=True)

	Bases: SageObject

This is a base class for various classes of curves and methods for
computing the semistable reduction. Objects of this class are determined by
a smooth projective curve \(Y\) over a field \(K\) and a discrete valuation
\(v_K\) on \(K\).

INPUT:


	Y – a smooth projective curve


	vK – a discrete valuation on the base field \(K\) of \(Y\)


	check – a boolean (default: True)




Instantiation of this class actually creates an instant of a suitable subclass,
which represents the kind of curve for which an algorithm for computing the
semistable reduction has been implemented. At the moment, there are two such
subclasses:


	If the degree of \(Y\) as a cover of the projective line is prime to the
residue characteristic of \(v_K\) then we invoke the subclass AdmissibleModel.
Note that this may not work: we can only guarantee that \(Y\) has admissible
reduction if the order of the Galois group of the cover \(Y\to X=\mathbb{P}^1_K\)
is prime to the residue characteristic.


	If \(Y\) is a superelliptic curve of degree \(p\), where \(p\) is the residue
characteristic of \(v_K\) and \(K\) has characteristic \(0\) then the subclass
SuperpModel is invoked.


	if none of the above holds, then we either raise a NotImplementedError
(if check=True) or we create an AdmissibleModel (if check=False)




EXAMPLES:

sage: from mclf import *
sage: v_5 = QQ.valuation(5)
sage: FX.<x> = FunctionField(QQ)
sage: R.<y> = FX[]
sage: FY.<y> = FX.extension(y^3 - y^2 + x^4 + x + 1)
sage: Y = SmoothProjectiveCurve(FY)
sage: YY = SemistableModel(Y, v_5)
sage: YY
semistable model of the smooth projective curve with Function field in y defined by y^3 - y^2 + x^4 + x + 1, with respect to 5-adic valuation





The degree of \(Y\) as a cover of the projective line is \(4\), which is strictly
less than \(p=5\). Hence \(Y\) has admissible reduction and we have created an instance
of the class AdmissibleModel:

sage: isinstance(YY, AdmissibleModel)
True





Actually, \(Y\) has good reduction at \(p=5\):

sage: YY.is_semistable()
True
sage: YY.components_of_positive_genus()
[the smooth projective curve with Function field in u1 defined by u1^3 + 4*u1^2 + x^4 + x + 1]






	
base_valuation()

	Return the valuation on the constant base field of the curve.






	
components()

	Return the list of all components of the admissible reduction of the curve.






	
components_of_positive_genus()

	Return the list of all components of of the admissible reduction of the
curve which have positive genus.






	
compute_semistable_reduction(verbosity=1)

	Compute the semistable reduction of this curve (and report on the
ongoing computation).

INPUT:

– verbosity - a nonnegative integer (default: 1)

OUTPUT:

Calling this function initiates the creation of a ReductionTree
which essentially encodes a semistable model of the curve. Depending
on the verbosity level, messages will be printed which report on the
ongoing computation. If verbosity is set to \(0\), no message will
be printed.

This method must be implemented by the subclasses of SemistableModel
(which are characterized by a particular method for computing a
semistable model). At the moment, these subclasses are
- AdmissibleModel
- Superell
- Superp






	
conductor_exponent()

	Return the conductor exponent at p of this curve.

EXAMPLES

In this example the conductor exponent was computed wrongly in a
previous version:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: f = x^4+2*x^3+2*x^2+x
sage: Y = SuperellipticCurve(f, 3)
sage: Y3 = SemistableModel(Y, QQ.valuation(3))
sage: Y3.conductor_exponent()
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constant_base_field()

	Return the constant base field of this curve.






	
curve()

	Return the curve.






	
is_semistable()

	Check whether the model is really (potentially) semistable.






	
reduction_tree()

	Return the reduction tree underlying this semistable model.






	
semistable_reduction()

	Return the special fiber of this semistable model.

Note:  not yet implemented






	
stable_reduction()

	Return the special fiber of the stable model of this curve.

The stable model is obtained from this semistable model by contracting
all ‘unstable’ components.

Note:  not yet implemented













          

      

      

    

  

    
      
          
            
  
Admissible reduction of curves

Let \(K\) be a field equipped with a discrete valuation \(v_K\). For the time being,
we assume that \(K\) is a number field. Then \(v_K\) is the \(\mathfrak{p}\)-adic
valuation corresponding to a prime ideal \(\mathfrak{p}\) of \(K\).

We consider a smooth projective  curve \(Y\) over \(K\). Our goal is to compute the
semistable reduction of \(Y\) at \(v_K\) and to extract nontrivial arithmetic
information on \(Y\) from this.

In this module we realize a class AdmissibleModel
which computes the semistable reduction of a given curve \(Y\) at \(v_K\) provided
that it has admissible reduction at \(v_K\). This is always the case if the
residue characteristic of \(v_K\) is zero or strictly larger than the degree
of \(Y\) (as a cover of the projective line).

AUTHORS:


	Stefan Wewers (2018-7-03): initial version




EXAMPLES:

<Lots and lots of examples>





TO DO:


	more doctests





	
class mclf.semistable_reduction.admissible_reduction.AdmissibleModel(Y, vK)

	Bases: mclf.semistable_reduction.semistable_models.SemistableModel

A class representing a curve \(Y\) over a field \(K\) with a discrete valuation
\(v_K\). Assuming that \(Y\) has (potentially) admissible reduction at \(v_K\),
we are able to compute the semistable reduction of \(Y\) at \(v_K\).

INPUT:


	Y – a smooth projective curve over a field \(K\)


	vK – a discrete valuation on \(K\)




OUTPUT: the object representing the curve \(Y\) and the valuation \(v_K\).
This object has various functionalities to compute the semistable reduction
of \(Y\) relative to \(v_K\), and some arithmetic invariants associated to it
(for instance the “exponent of conductor” of \(Y\) with respect to \(v_K\)).

EXAMPLES:


	
original_model_of_curve()

	Return the original model of the curves.













          

      

      

    

  

    
      
          
            
  
Semistable models of superelliptic curves of degree \(p\)

Let \(K\) be a field of characteritic zero and \(v_K\) a discrete valuation on \(K\)
whose residue field is finite of characteristic \(p>0\).

Let \(f\in K[x]\) be a polynomial over \(K\) which is not a \(p\)-th power and whose
radical has degree at least three. We consider the smooth projective  curve
\(Y\) over \(K\) defined generically by the equation


\[Y: y^p = f(x).\]

So \(Y\) is a superelliptic curve of degree \(p\).

In this module we define a class SuperpModel which represents a semistable
model of a superelliptic curve \(Y\) of degree \(p\), with respect to a \(p\)-adic
valuation on the base field \(K\) of \(Y\).

The method to define and compute a semistable model in this particular case is
taken from


	[We17] S. Wewers, Semistable reduction of superelliptic curves of degree p, preprint, 2017.




The key notion is the etale locus.

The superelliptic curve \(Y\) is, by definition, a cyclic cover


\[\phi: Y \to X\]

of degree \(p\) of the projective line \(X\) over the base field \(K\).
We consider \(X\) and \(Y\) as analytic spaces over the completion of \(K\)
at the base valuation \(v_K\). Let


\[\bar{\phi}: \bar{Y} \to \bar{X}\]

denote the semistable reduction of the cover \(Y\to X\).
The etale locus is an affinoid subdomain \(X^{et}\) of \(X\)
consisting of those points which specialize to a point on \(\bar{X}\)
above which the map \(\bar{\phi}\) is etale.

While the affinoid \(X^{et}\) is determined by the semistable reduction
of the cover \(\phi\), conversely \(X^{et}\) contains a lot of information
on the semistable reduction. The main result of [We17]
gives an explicit description of the affinoid \(X^{et}\) as a union
of rational domains defined by rational functions which can be
easily computed in terms of the polynomial \(f\) defining \(Y\).

Once the etale locus \(X^{et}\) is computed, we can define an inertial model
\(\mathcal{X}_0\) of \(X\). A semistable model \(\mathcal{Y}\) of \(Y\) can then be
obtained as the normalization of \(\mathcal{X}_0\) inside \(Y_L\), for a sufficiently
large finite extension \(L/K\).

The class SuperpModel is a subclass of the class SemistableModel and can
be instantiated via its parent. All methods to extract information about the
semistable reduction of \(Y\) are simply inherited from SemistableModel. The
subclass itself only defines the methods to compute the etale locus and to create
the corresponding inertail model.

AUTHORS:


	Stefan Wewers (2017-07-29): initial version




EXAMPLES:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: f = x^4 + x^2 + 1
sage: Y = SuperellipticCurve(f, 3)
sage: Y
superelliptic curve y^3 = x^4 + x^2 + 1 over Rational Field
sage: v_3 = QQ.valuation(3)
sage: YY = SuperpModel(Y, v_3)
sage: YY
semistable model of superelliptic curve Y: y^3 = x^4 + x^2 + 1 over Rational Field, with respect to 3-adic valuation
sage: YY.etale_locus()
Affinoid with 3 components:
Elementary affinoid defined by
v(x) >= 3/4
Elementary affinoid defined by
v(x - 2) >= 5/4
Elementary affinoid defined by
v(x + 2) >= 5/4

sage: YY.is_semistable()
True
sage: YY.components()
[the smooth projective curve with Function field in u1 defined by u1^3 + 2*x^4 + 2*x^2 + 2,
 the smooth projective curve with Function field in u2 defined by u2^3 + u2 + 2*x^2,
 the smooth projective curve with Function field in u2 defined by u2^3 + u2 + 2*x^2,
 the smooth projective curve with Function field in u2 defined by u2^3 + u2 + 2*x^2]
sage: YY.conductor_exponent()
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We check that issues #39 and #40 have been fixed:

sage: v_2 = QQ.valuation(2)
sage: f =  x^5 - 5*x^4 + 3*x^3 - 3*x^2 + 4*x - 1
sage: Y = SuperellipticCurve(f, 2)
sage: Y2 = SemistableModel(Y, v_2)
sage: Y2.etale_locus()
Affinoid with 2 components:
Elementary affinoid defined by
v(x + 1) >= 2/3
Elementary affinoid defined by
v(x^4 +  4*x + 4) >= 8/3
sage: Y2.is_semistable()
True





TO DO:


	more doctests





	
class mclf.semistable_reduction.superp_models.SuperpModel(Y, vK)

	Bases: mclf.semistable_reduction.semistable_models.SemistableModel

Return a semistable model of a superelliptic curve of degree \(p\).

INPUT:


	Y – a superelliptic curve over a field \(K\)


	vK – a discrete valuation on \(K\)




The field \(K\) must be of characteristic \(0\) and the residue characteristic
of vK must be a prime \(p\) which is equal to the covering degree of \(Y\).

OUTPUT: the object representing a semistable model of \(Y\).


Note

For the time being, we need to make the following additional assumptions
on the curve \(Y\):


	the polynomial \(f\) which is part of the defining equation
\(y^p = f(x)\) is of degree prime to \(p\).




This restrictions is preliminary and will be removed in a future version.
Note that a superelliptic curve of degree \(p\) can be written in the required
form if and only if the map \(Y\to X\) has a \(K\)-rational branch point.



EXAMPLES:


	
compute_semistable_reduction()

	Compute the semistable reduction of this curve, and report on the
computation and the result.






	
etale_locus()

	
Return the etale locus of the cover \(Y\to X\).

OUTPUT: the etal locus, an affinoid subdomain of the Berkovich line
\(X\) (the analytic space associated to the projektive line over the
completion of the base field \(K\) with respect to the valuation \(v_K\)).

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: f = x^3 + x^2 + 1
sage: Y = SuperellipticCurve(f, 2)
sage: Y
superelliptic curve y^2 = x^3 + x^2 + 1 over Rational Field
sage: YY = SuperpModel(Y, v_2)
sage: YY.etale_locus()
Elementary affinoid defined by
v(x^4 + 4/3*x^3 + 4*x + 4/3) >= 8/3





We check Example 4.14 from [BouWe16]. The original equation is
\(y^2 = f(x) = 2x^3 + x^2 + 32\), and \(f\) is not monic, as required.
To fix this, we substitute \(x/2\) and multiply with \(4\). Then the
new equation is \(y^2 = x^3 + x^2 + 128\):

sage: f = x^3 + x^2 + 128
sage: Y = SuperellipticCurve(f, 2)
sage: YY = SuperpModel(Y, v_2)
sage: YY.etale_locus()
Elementary affinoid defined by
v(x) >= 2
v(1/x) >= -5/2
<BLANKLINE>









Note

At the moment, the construction of the superelliptic curve \(Y\) requires that
the polynomial \(f\) defining \(Y\) is monic, integral with respect to \(v_K\)
and of degree prime to \(p\). The motivation for this restriction, and its
result is that the etale locus is contained in the closed unit disk.








	
reduction_tree()

	Return the reduction tree which determines the semistabel model.










	
mclf.semistable_reduction.superp_models.p_approximation(f, p)

	Return the \(p\)-approximation of f.

INPUT:


	
	f – a polynomial of degree \(n\) over a field \(K\), with nonvanishing

	constant coefficient







	p – a prime number




OUTPUT:

Two polynomials \(h\) and \(g\) in \(K[x]\), such that


	\(f=a_0(h^p+g)\), where \(a_0\) is the constant coefficient of \(f\)


	\(r:=deg(h)\leq n/p\), and


	\(x^{(r+1)}\) divides \(g\)




Note that \(h, g\) are uniquely determined by these conditions.






	
mclf.semistable_reduction.superp_models.p_approximation_generic(f, p)

	Return the generic \(p\)-approximation of f.

INPUT:


	f – a polynomial of degree \(n\) over a field \(K\), with nonvanishing constant coefficient


	p – a prime number




OUTPUT:

Two polynomials \(H\) and \(G\) in \(K(x)[t]\) which are the \(p\)-approximation
of the polynomial \(F:=f(x+t)\), considered as polynomial in \(t\).









          

      

      

    

  

    
      
          
            
  
Reduction trees: a data structure for semistable reduction of covers of the projective line.

Let \(K\) be a field with a discrete valuation \(v_K\). We let \(X:=\mathbb{P}^1_K\)
denote the projective line over \(K\). We are also given a finite cover


\[\phi: Y \to X,\]

where \(Y\) is a smooth projective and absolutely irreducible curve. We assume that
\(Y\) has positive genus.

Let \(\mathcal{X}_0\) be a (normal) \(v_K\)-model of \(X\). Then for every finite
field extension \(L/K\) and every extension \(v_L\) of \(v_K\) to \(L\), we obtain
\(v_L\)-models \(\mathcal{X}\) of \(X_L\) and \(\mathcal{Y}\) of \(Y_L\) and a finite map
\(\mathcal{Y}\to\mathcal{X}\) extending \(\phi\) by normalizing \(\mathcal{X}_0\).
Restricting this map to the special fiber yields a finite map


\[\bar{\phi}: \bar{Y} \to \bar{X}\]

between projective curves over the residue field of \(v_L\). We call this the
reduction of \(\phi\) over \((L,v_L)\) with respect to the inertial model
\(\mathcal{X}_0\).

If we fix \(\phi\) and \(\mathcal{X}_0\) then there exists \((L,v_L)\) such that the
curves \(\bar{Y}\) and \(\bar{X}\) are reduced. If this is the case, any further
extension of \((L,v_L)\) will not change \(\bar{Y}\) and \(\bar{X}\) in an essential
way (more precisely, it will only replace \(\bar{Y}\) and \(\bar{X}\) by their
base extensions to the larger residue field). Therefore we call the models
\(\mathcal{Y}\) and \(\mathcal{X}\) permanent.

We say that \(\mathcal{X}_0\) is a semistable inertial model of \(\phi\) if
the permanent models \(\mathcal{Y}\) and \(\mathcal{X}\) are semistable, and
all irreducible components of the (semistable) curves \(\bar{Y}\) and \(\bar{X}\)
are smooth (i.e. they do not intersect themselves).

The class ReductionTree defined in this module is a datastructure which
encodes a cover \(\phi:Y\to X\) and an inertial model \(\mathcal{X}_0\) as above,
and provides functionality for computing the reduction
\(\bar{\phi}:\bar{Y}\to\bar{X}\) with respect to extensions \((L,v_L)\). In
particular, it allows us to check whether the given inertial model \(\mathcal{X}_0\)
is semistable and, if this is the case, to compute the semistable reduction of
the curve \(Y\).

The inertial model

The inertial model \(\mathcal{X}_0\) of \(X\) is determined by a Berkovich tree
\(T\) on the analytic space \(X^{an}\) (the Berkovich line over \(\hat{K}\), the
completion of \(K\) with respect to \(v_K\)). Thus,


	the irreducible components of the special fiber of \(\mathcal{X}_0\) (called
the inertial components) correspond to the vertices of \(T\) which are points
of type II on \(X^{an}\).


	the vertices of \(T\) which are points of type I (i.e. closed points on \(X\))
are considered marked points on \(X\)


	an edge of \(T\) connecting two points of type II correspond to the point
of intersection of the two corresponding inertial components


	an edge of \(T\) connecting a point of type II and a point of type II corresponds
to the specialization of a marked point to an inertial component




In particular, the inertial model \(\mathcal{X}_0\) is a marked model. As a
result, the models \(\mathcal{X}\) and \(\mathcal{Y}\) induced by \(\mathcal{X}_0\)
and an extension \((L,v_L)\) are marked models, too. The condition that
\(\mathcal{X}_0\) is a semistable inertial model therefore implies that \(\mathcal{X}\)
and \(\mathcal{Y}\) are marked semistable models, for \(L/K\) sufficiently large.
Recall that this means that the marked points specialize to the smooth points
on the special fiber.

Reduction components

Let us fix an inertial component \(Z_0\). The interior of \(Z_0\) is the affinoid
subdomain of \(X^{an}\) consisting of all points which specialize to a point on
\(Z_0\) which is neither the point of intersection with another inertial component
nor the specialization of a marked point (exception: if there is a unique
inertial component and no marking then this is all of \(X^{an}\) and not an
affinoid). We have to choose a basepoint for \(Z_0\), which is a closed point on
\(X\) lying inside the interior. This choice is made in a heuristic manner;
the degree of the base point should be as small as possible. Then a splitting
field for \(Z_0\) is a finite extension \((L,v_L)\) of \((K,v_K)\) with the property
that the base point and all points on \(Y\) above it are \(\hat{L}\)-rational (where
\(\hat{L}\) denotes the completion of \(L\) with respect to \(v_L\)).

AUTHORS:


	Stefan Wewers (2017-8-10): initial version




EXAMPLES:

sage: from mclf import *
sage: FX.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(FX, v_2)
sage: T = BerkovichTree(X, X.gauss_point())
sage: T, _ = T.add_point(X.infty())
sage: R.<y> = FX[]
sage: FY.<y> = FX.extension(y^2-x^3-1)
sage: Y = SmoothProjectiveCurve(FY)
sage: RT = ReductionTree(Y, v_2, T)
sage: RT
A reduction tree for  the smooth projective curve with Function field in y defined by y^2 - x^3 - 1, relative to 2-adic valuation
sage: RT.inertial_components()
[inertial component of reduction tree with interior Elementary affinoid defined by
 v(x) >= 0
 ]





TODO:


	better documentation


	more doctests





	
class mclf.semistable_reduction.reduction_trees.InertialComponent(R, xi, is_separable=True)

	Bases: SageObject

Return the inertial component corresponding to a type-II-point which is
a vertex of \(T\).

INPUT:


	R – a reduction tree


	xi – a point of type II on the Berkovich line \(X\) underlying \(R\);
it is assumed that \(\xi\) is a vertex of the Berkovich tree \(T\) underlying \(R\)


	is_separable – boolean (default: True)




OUTPUT: The base component corresponding to \(\xi\).

It is assumed that \(\xi\) is a vertex of the given Berkovich tree. It thus
corresponds to an irreducible component of the special fiber of the inertial
model \(\mathcal{X}_0\). If this is not the case, an error is raised.

The inertial component which is generated by this command is an object
for hosting methods which compute information about the irreducible components
of models \(Y\) of \(X\) lying above \(\xi\), over various extensions of the base field.


	
basepoint()

	Return the base point.

The basepoint is a type-I-point on the underlying Berkovich line which
specializes to the interior of this component of the special fiber of
\(\mathcal{X}_0\). If no base point is given when the base component
was created, then such a point is computed now.






	
berkovich_line()

	Return the underlying Berkovich line \(X\).






	
component()

	Return the smooth projective curve underlying this inertial component.

Note that the constant base field of this curve is, by definition,
the residue field of the base valuation. This may differ from the
field of constants of its function field.






	
component_degree(u=∞)

	Return the sum of the degrees of the upper components above this inertial
component.

Here the degree of an upper component ist the degree of its field of
constants, as extension of the constant base field.






	
function_field()

	Return the function field of this inertial component
(which is the residue field of the valuation corresponding to it).






	
interior()

	Return the interior of this inertial component.

OUTPUT:

an elementary affinoid subdomain of the underlying Berkovich line.

The interior of a base component is the elementary affinoid
subdomain of the underlying Berkovich line whose canonical reduction
is an open affine subset of this inertial component of the inertial model
\(\mathcal{X}_0\).

It is chosen such that the canonical reduction does not contain the
points of intersection with the other components of \(\mathcal{X}_{0,s}\)
and is disjoint from the residue classes of the marked points.






	
is_separable()

	Return True is this inertial component is separable.






	
lower_components(u=∞)

	Return the lower components relative to a given extension of the base field.

INPUT:


	u – an integer, or Infinity (default: Infinity)




OUTPUT: the list of lower components of the model of the reduction tree
lying over this base component. If \(u=\infty\) then these components
are computed over the splitting field of the base component. Otherwise,
\(u\) is assumed to be a break in the ramification filtration of the
splitting field, and then we use the corresponding subfield.

The entries of the list correspond to the irreducible components of the
special fiber of the \(v_L\)-model \(\mathcal{X}\) (the normalization of
\(\mathcal{X}_0\)) lying over the given inertial component. By definition,
the constant base field of these components is the residue field of
\(v_L\) (and it may differ from its field of constants).






	
outdegree(u=∞)

	Return the outdegree of this inertial component.

INPUT:


	u – an integer, or Infinity (default: Infinity)




OUTPUT: the sum of the degrees of all edges emanating from components of
the curve \(\bar{Y}^u\) which lie above this inertial component.

Here \(u\) is a break in the ramification filtration of splitting field
of this inertial component, and the curve \(\bar{Y}^u\) is the special fiber
of the reduction of \(Y\) over the corresponding subfield \(L^u\) (with respect
to the given inertial model). By edge we mean an edge of the component
graph of the curve \(\bar{Y}^u\); it corresponds to a point in which two
components intersect. We call an edge outgoing (with respect to this
inertail component) if it lies above an edge of the component graph of
the special fiber of the inertial model which is directed away from this
inertial component. The degree of an (upper) edge is the degree of
the corresponding point of \(\bar{Y}^u\), with respect to the residue
field of \(L^u\).






	
outgoing_edges()

	Return the list of outgoing edges from this inertial component.

Here an edge is a point on this inertial component where it intersects
another component; so it corresponds to an edge on the Berkovich tree
underlying the chosen inertial model. Outgoing is defined with respect
to the natural orientation of the Berkovich tree.






	
reduce(f)

	Return the reduction of a rational function to this component.

INPUT:


	f – an element of the function field of the Berkovich line




It is assumed that \(f\) a unit of the valuation ring corresponding to
this component.

OUTPUT: the image of \(f\) in the function field of this component.

EXAMPLES:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^3-1, 2)
sage: Y3 = SemistableModel(Y, QQ.valuation(3))
sage: Z = Y3.reduction_tree().inertial_components()[1]
sage: f = Z.valuation().element_with_valuation(1/2)^2/3
sage: Z.reduce(f)
x










	
reduction_conductor()

	Return the contribution of this inertial component to the conductor exponent.

OUTPUT: an integer \(f_Z\) (where \(Z\) is this inertial component).

The conductor exponent \(f_Y\) of the curve \(Y\) can be written in the form


\[f_Y = 1 + \sum_Z f_Z\]

where \(Z\) runs over all inertial components of the reduction tree and
\(f_Z\) is an integer, called the contribution of \(Z\) to the conductor
exponent.

TODO: Write better documentation.






	
reduction_genus(u=∞)

	Return the sum of the genera of the upper components.

INPUT:


	u – an integer, or Infinity (default: Infinity)




OUTPUT: a nonnegative integer, the sum of the genera of the upper
components for this base component, computed with respect to the
splitting field. If \(u\neq\infty\) then it is assumed that \(u\) is a
break in the ramification filtration of the splitting field, and then
the corresponding subfield is used instead.






	
reduction_tree()

	Return the reduction tree of this component.






	
splitting_field(check=False)

	Return a splitting field for this inertial component.

INPUT:


	check – a boolean (default: False)




OUTPUT: a weak Galois extension \((L,v_L)\) of the base field.

At the moment, the splitting field of a inertial component is a
weak Galois extension \((L,v_L)\) of the base field with the following
properties:


	the basepoint becomes rational over the strict henselization of \((L,v_L)\)


	all lower components have multiplicities one over \((L,v_L)\)


	if the inertial component is marked as separable then the fiber of
the cover \(\phi:Y\to X\) over the base point splits over
the strict henselization of \((L,v_L)\)





Warning

For the moment, this only works if the basepoint is contained inside
the closed unit disk.








	
type_II_point()

	Return the type-II-point \(\xi\) corresponding to this base component.






	
upper_components(u=∞)

	Return the upper components relative to a given extension of the base field.

INPUT:


	u – an integer, or Infinity (default: Infinity)




OUTPUT: the list of upper components of the model of the reduction tree
over this inertial component. If \(u=\) Infinity then the splitting field
of this inertial component is used to compute the upper components. Otherwise,
\(u\) must be step in the ramification filtration of the splitting field,
and then the corresponding subfield is used.










	
class mclf.semistable_reduction.reduction_trees.LowerComponent(Z0, vL, v, phi)

	Bases: mclf.semistable_reduction.reduction_trees.ReductionComponent

Return the lower component corresponding to a given valuation.

A lower component is a reduction component \(Z\) on the base change \(X_L\)
of the Berkovich line \(X\) to some finite extension \(L/K\). It is by construction
the inverse image of a given inertial component \(Z_0\) on \(X\), which is part
of a reduction tree.

INPUT:


	Z0 – an inertial component of a reduction tree \(Y\)


	vL – a discrete valuation on a finite extension \(L\) of the base
field of \(Y\), extending the base valuation on \(Y\)


	v – a discrete valuation on the base extension to \(L\) of the function
field \(F_X\), extending \(v_L\)


	
	phi – the natural morphism from the function field of Z0 into

	the residue field of v









OUTPUT: The lower component above \(Z\) corresponding to \(v\).


	
fiber_degree_in_upper_components(P)

	Return the sum of the absolute degrees of the points above P on
all upper components.






	
map_to_inertial_component()

	Return the natural map from this lower component to its inertial component.

EXAMPLES:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^3-x, 2)
sage: Y3 = SemistableModel(Y,QQ.valuation(3))
sage: Z = Y3.reduction_tree().inertial_components()[0]
sage: W = Z.lower_components()[0]
sage: f = W.map_to_inertial_component()
sage: f.domain()
the smooth projective curve with Rational function field in x over Finite Field of size 3
sage: f.codomain()
the smooth projective curve with Rational function field in x over Finite Field of size 3










	
upper_components()

	Return the list of all upper components lying above this lower component.

This lower component corresponds to a discrete valuation \(v\) on a rational
function field \(L(x)\) extending the valuation \(v_L\), where \(L/K\) is some
finite extension of the base field \(K\). The upper components correspond
to the extensions of v to the function field of \(Y_L\) (which is a finite
extension of \(L(x)\)).

Since the computation of all extensions of a nonstandard valuation on a
function field to a finite extension is not yet part of Sage, we have
to appeal to the MacLane algorithm ourselves.

EXAMPLES:

This example shows that extending valuations also works if the equation
is not integral wrt the valuation v

sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(5*x^3 + 1, 2)
sage: Y2 = SemistableModel(Y, QQ.valuation(5))
sage: Y2.is_semistable()  # indirect doctest
True














	
class mclf.semistable_reduction.reduction_trees.ReductionComponent

	Bases: SageObject

The superclass for the classes LowerComponent and UpperComponent.


	
base_field()

	Return the base field of this reduction component.






	
base_valuation()

	Return the base valuation of this reduction component.






	
component()

	Return the normalization of this reduction component.






	
constant_base_field()

	Return the constant base field of this reduction component.

Note that this field is isomorphic but not equal to the residue field
of the base valuation. The isomorphism can be obtained via the
restriction of isomorphism between the residue field of the valuation
corresponding to the component and the function field of the component
(can be obtained via self.from_residue_field()).






	
from_residue_field()

	Return the isomorphism from the residue field of the valuation
corresponding to this reduction component to its function field.






	
function_field()

	Return the function field of this reduction component.

Note that the function field of this reduction component is the residue
field of the corresponding valuation \(v\). It must not be confused with
the domain of \(v\), which is the function field of the generic fiber.






	
function_field_of_generic_fiber()

	Return the function field of the generic fiber of the model
underlying this reduction component.






	
inertial_component()

	Return the inertial component underlying this reduction component.






	
multiplicity()

	Return the multiplicity of this reduction component.

By definition, this is equal to the ramification index of the valuation
corresponding to this component over the base valuation.






	
reduce(f)

	Return the image of a function on the generic fiber to this component.






	
reduction_tree()

	Return the reduction tree underlying the reduction component.






	
valuation()

	Return the valuation corresponding to this reduction component.










	
class mclf.semistable_reduction.reduction_trees.ReductionTree(Y, vK, T, separable_components=None)

	Bases: SageObject

Initialize and return a reduction tree associated to a curve and a valuation.

INPUT:


	Y – a curve over a basefield \(K\), given as SmoothProjectiveCurve


	vK – a discrete valuation on \(K\)


	T – a Berkovich tree on the Berkovich line \(X^{an}\) underlying \((Y,v_K)\)


	separable_components – a list of type-II-points on \(X^{an}\) which
are vertices of \(T\) (or None)




OUTPUT: a reduction tree for Y relative to vK; the inertial model
\(\mathcal{X}_0\) is the marked model of \(X\) induced by the Berkovich tree \(T\).

Note that the tree \(T\) will be modified by the creation of the reduction tree.


Note

In the present release, the base field \(K\) must be the field of rational
numbers.




	
add_inertial_component(xi)

	Add a new inertial component to the list of such.

INPUT:


	xi – a point of type II on the underlying Berkovich line; it
is assumed that xi is a vertex of the Berkovich tree \(T\)




OUTPUT: a new inertial component \(Z\) is created and appended to the list
of all inertial components. Moreover, \(Z\) is assigned to the new
attribute inertial_component  of the subtree of \(T\) with root
\(\xi\).






	
base_field()

	Return the base field.






	
base_valuation()

	Return the specified valuation of the base field.






	
berkovich_line()

	Return the Berkovich line \(X\) of which the curve \(Y\) is a cover.






	
berkovich_tree()

	Return the Berkovich tree underlying this reduction tree.






	
curve()

	Return the curve \(Y\).






	
inertial_components()

	Return the list of inertial components.






	
is_semistable()

	Check wether the reduction specified by this object is semistable.






	
reduction_conductor()

	Return the conductor of the curve.

OUTPUT: a nonnegative integer, which is the conductor of the local Galois
representation associated to the reduction which is specified in this
ReductionTree. If the reduction is semistable, then the result is
the conductor of \(Y\).

TODO: Write better documentation.

EXAMPLES:

We check that the conductor exponent takes the component graph into account as well:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^3 + x^2 + 3, 2)
sage: Y3 = SemistableModel(Y, QQ.valuation(3))
sage: Y3.is_semistable()
True
sage: Y3.conductor_exponent() # indirect doctest
1










	
reduction_genus()

	Return the genus of the reduction.

OUTPUT: a nonnegative integer, which is the arithmetic genus of the reduction
of the curve \(Y\) specified by the data in this ReductionTree, provided
this reduction is semistable.

In fact, the number we compute is the sum of the genera of the upper
components (i.e. the normalizations of the irreducible components of
\(\bar{Y}\)) and the number of loops of the component graph of \(\bar{Y}\),
which is (number of double points) - (number of components) + 1.

EXAMPLES:

We test that the arithmetic genus of a totally degenerate curve is computed correctly:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: v_3 = QQ.valuation(3)
sage: f = (x^2 - 3)*(x^2 + 3)*(x^3 - 3)
sage: Y = SuperellipticCurve(f, 2)
sage: Y.genus()
3
sage: Y3 = SemistableModel(Y, v_3)
sage: Y3.reduction_tree().reduction_genus()
3














	
class mclf.semistable_reduction.reduction_trees.UpperComponent(Z, v)

	Bases: mclf.semistable_reduction.reduction_trees.ReductionComponent

Return the upper component above this lower component,
corresponding to a given valuation.

INPUT:


	Z – a lower component of a reduction tree \(Y\)


	v – a discrete valuation on the base extension to \(L\) of the function
field \(F_Y\), extending the valuation corresponding to \(Z\)




OUTPUT: The upper component above \(Z\) corresponding to \(v\).

Note that the constant base fields of the upper and the lower components
are equal, by definition, and isomorphic to the residue field of \(L\).


	
field_of_constants_degree()

	Return the degree of the field of constants over the constant base field
of this upper reduction component.






	
genus()

	Return the genus of this upper reduction component.






	
lower_component()

	Return the lower component underneath this upper component.






	
map_to_lower_component()

	Return the natural map from this upper component to the lower component beneath.










	
mclf.semistable_reduction.reduction_trees.make_function_field(K)

	Return the function field isomorphic to this field, an isomorphism,
and its inverse.

INPUT:


	K – a field




OUTPUT: A triple \((F,\phi,\psi)\), where \(F\) is a rational function field,
\(\phi:K\to F\) is a field isomorphism and \(\psi\) the inverse of \(\phi\).

It is assumed that \(K\) is either the fraction field of a polynomial ring
over a finite field \(k\), or a finite simple extension of such a field.

In the first case, \(F=k_1(x)\) is a rational function field over a finite
field \(k_1\), where \(k_1\) as an absolute finite field isomorphic to \(k\).
In the second case, \(F\) is a finite simple extension of a rational function
field as in the first case.


Note

this command seems to be partly superflous by now, because the residue
of a valuation is already of type “function field” whenever this makes sense.
However, even if \(K\) is a function field over a finite field, it is not
guaranteed that the constant base field is a ‘true’ finite field, and then
it is important to change that.
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      	absolute_degree() (in module mclf.curves.smooth_projective_curves)

      
        	(mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve method)
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      	adapt_to_function() (mclf.berkovich.berkovich_trees.BerkovichTree method)


      	add_inertial_component() (mclf.semistable_reduction.reduction_trees.ReductionTree method)


      	add_point() (mclf.berkovich.berkovich_trees.BerkovichTree method)
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