
MCLF Documentation

Stefan Wewers

Aug 25, 2020

Contents

1 Curves 3
1.1 Smooth projective curves over a field. 3
1.2 Morphisms of smooth projective curves . 14
1.3 Superelliptic curves . 17

2 The Berkovich line 19
2.1 The Berkovich line over a discretely valued field . 19
2.2 Finite subtrees of the Berkovich line . 30
2.3 Points of type V on the Berkovich line. 36
2.4 Affinoid subdomains of the Berkovich line. 38
2.5 Piecewise affine functions on the Berkovich projective line. 47

3 p-adic extensions 57
3.1 Fake p-adic completions . 57
3.2 Fake 𝑝-adic embeddings . 64
3.3 Fake 𝑝-adic extensions . 66
3.4 Weak p-adic Galois extensions . 67

4 Semistable reduction of curves 71
4.1 Semistable reduction of a smooth projective curve over a local field 71
4.2 Admissible reduction of curves . 75
4.3 Semistable models of superelliptic curves of degree 𝑝 . 75
4.4 Reduction trees: a data structure for semistable reduction of covers of the projective line. 79

5 Indices and tables 89

Bibliography 91

Python Module Index 93

Index 95

i

ii

MCLF Documentation

Contents:

Contents 1

MCLF Documentation

2 Contents

CHAPTER 1

Curves

1.1 Smooth projective curves over a field.

Let 𝑘 be a field and 𝐹/𝑘 a finitely generated field extension of transcendence degree one (i.e. a ‘function field over 𝑘’).
Then there exists a smooth projective curve 𝑋 over 𝑆𝑝𝑒𝑐(𝑘) with function field 𝐹 , unique up to unique isomorphism.
The set of closed points on 𝑋 are in natural bijection with the set of discrete valuations on 𝐹 which are trivial on 𝑘.
See

• R. Hartshorne, Algebraic Geometry, Theorem I.6.9.

The classes in this module provide the definition and some basic functionality for such curves.

A curve 𝑋 is defined via its function field 𝐹𝑋 . Points are represented by the corresponding valuations on 𝐹𝑋 , and no
smooth projective model of𝑋 is actually computed. However, we do compute a list of ‘coordinate functions’ 𝑥1, .., 𝑥𝑛
which separate all points, meaning that the closure of the rational map from 𝑋 to projective space of dimension 𝑛 is
injective. Then a (closed) point 𝑥 on 𝑋 can also be represented by the tupel (𝑓1(𝑥), .., 𝑓𝑛(𝑥)). This is useful to test
for equality of points.

A function field in Sage is always realized as a simple separable extension of a rational function field. Geometrically,
this means that the curve 𝑋 is implicitly equipped with a finite separable morphism 𝜑 : 𝑋 → P1

𝑘 to the projective line
over the base field 𝑘.

The base field 𝑘 is called the constant base field of the curve, and it is part of the data. We do not assume that the
extension 𝐹𝑋/𝑘 is regular (i.e. that 𝑘 is algebraically closed in 𝐹𝑋). Geometrically this means that the curve 𝑋 may
not be absolutely irreducibel as a 𝑘-scheme. The field of constants of 𝑋 is defined as the algebraic closure of 𝑘 inside
𝐹𝑋 . It is a finite extension 𝑘𝑐/𝑘. If we regard 𝑋 as a curve over its fields of constants then it becomes absolute
irreducible.

It would be interesting to have an efficient algorithm for computing the field of constants, but it seems that this has not
been implemented in Sage yet. To compute the genus of 𝑋 it is necessary to know at least the degree [𝑘𝑐 : 𝑘]. If 𝑘 is a
finite field, it is actually easy to compute 𝑘𝑐. If 𝑘 is a number field we use a probabilistic algorithm for computing the
degree [𝑘𝑐 : 𝑘], by reducing the curve modulo several small primes.

Currently, the function field 𝐹 defining a smooth projective curve must be a simple finite extension of a rational

3

MCLF Documentation

function field, i.e. of the form

𝐹 = 𝑘(𝑥)[𝑦]/(𝐺)

where 𝐺 is an irreducible polynomial over 𝑘(𝑥). If not explicitly stated otherwise, it is assumed that 𝑘 is the constant
base field of the curve 𝑋 . If 𝑘 is a finite field, then one may also declare any subfield 𝑘0 of 𝑘 to be the constant base
field. Geometrically, this means that we consider 𝑋 as a curve over Spec(𝑘0). In any case, the field of constants of 𝑋
is a finite extension of 𝑘.

AUTHORS:

• Stefan Wewers (2016-11-11): initial version

EXAMPLES:

sage: from mclf import *
sage: K = GF(2)
sage: FX.<x> = FunctionField(K)
sage: R.<T> = FX[]
sage: FY.<y> = FX.extension(T^2+x^2*T+x^5+x^3)
sage: Y = SmoothProjectiveCurve(FY)
sage: Y
the smooth projective curve with Function field in y defined by y^2 + x^2*y + x^5 + x^
→˓3
sage: Y.genus()
1
sage: Y.zeta_function()
(2*T^2 + T + 1)/(2*T^2 - 3*T + 1)

Over finite fields, we are allowed to specify the constant base field:

sage: K = GF(4)
sage: F.<x> = FunctionField(K)
sage: X = SmoothProjectiveCurve(F, k=GF(2))
sage: X
the smooth projective curve with Rational function field in x over Finite Field in z2
→˓of size 2^2 and constant base field Finite Field of size 2
sage: X.field_of_constants()
Finite Field in z2 of size 2^2

A curve may also be defined by an irreducible bivariate polynomial:

sage: A.<x,y> = QQ[]
sage: X = SmoothProjectiveCurve(y^2 - x^3 - 1)
sage: X
the smooth projective curve with Function field in y defined by y^2 - x^3 - 1

If the curve is defined over a number field, we can find a prime of good reduction, and compute the reduction:

sage: v_p = X.prime_of_good_reduction()
sage: v_p
5-adic valuation

The result is a discrete (p-adic) valuation on the constant base field. The reduction is a smooth projective curve of the
same genus:

sage: Xb = X.good_reduction(v_p)
sage: Xb

(continues on next page)

4 Chapter 1. Curves

MCLF Documentation

(continued from previous page)

the smooth projective curve with Function field in y defined by y^2 + 4*x^3 + 4
sage: Xb.genus()
1

Todo:

• allow to specify the constant base field in a more flexible way

• write more doctests !!

• implement a general and deterministic algorithm for computing the field of constants (and not just the degree)

• the residue field of a point should be explicitly an extension of the constant base field.

• treat the base curve 𝑋 as a curve, not just as a function field

• realize morphisms between curves, in particular the canonical map to 𝑋

class mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve(X,
v)

Bases: SageObject

A closed point on a smooth projective curve.

A point on a curve 𝑋 is identified with the corresponding valuation 𝑣𝑥 on the function field 𝐹 of 𝑋 .

Alternatively, a point 𝑥 on 𝑋 can be represented by the vector

[𝑣𝑥(𝑓1), . . . , 𝑣𝑥(𝑓𝑛)]

where 𝑓1, . . . , 𝑓𝑛 is a list of coordinate functions, i.e. rational functions which define an injective map from 𝑋
into P1 × . . .× P1.

We use the latter representation to check for equality of points.

absolute_degree()
Return the absolute degree of self.

The absolute degree of a point 𝑥 on a curve 𝑋 over 𝑘 is the degree of the extension 𝑘(𝑥)/𝑘.

Here 𝑘 is the constant base field of the curve, which may not be equal to the field of constants.

coordinates()
Return the coordinate tupel of the point.

NOTE:

for a curve over a number field and for a point whose residue field is of high degree, this can be very slow.
It would be better to implement this function in a lazy way, for instance as an iterator.

curve()
Return the underlying curve of the point.

degree()
Return the degree of self.

The degree of a point 𝑥 on a curve 𝑋 over 𝑘 is the degree of the residue field 𝑘(𝑥) as an extension of the
field of constants of 𝑋 . The latter may be a proper extension of the base field 𝑘!

is_equal(P)
Check whether this point is equal to P.

INPUT:

1.1. Smooth projective curves over a field. 5

MCLF Documentation

• P – a point on the curve underlying this point

OUTPUT:

True is 𝑃 is equal to self, False otherwise.

Currently, the check for equality is done using the ‘coordinates’ of the points. This may be very slow. It
would probably be better to test the equality of the underlying valuations. But here we can’t rely on Sage,
so this would require a hack.

EXAMPLES:

sage: import mclf.curves.smooth_projective_curves
sage: from mclf.curves.smooth_projective_curves import SmoothProjectiveCurve
sage: F0.<x> = FunctionField(GF(3))
sage: R.<y> = F0[]
sage: F.<y> = F0.extension(y^2 - (x+1)*x^2)
sage: Y = SmoothProjectiveCurve(F)
sage: v0 = F0.valuation(x)
sage: fiber = Y.fiber(v0)
sage: fiber[0].is_equal(fiber[1])
False

order(f)
Return the order of the function in the point.

This is the same as self.valuation()(f).

residue_field()
Return the residue field of the point.

valuation()
Return the valuation corresponding to the point.

value(f)
Return the value of the function f in the point.

If f has a pole then Infinity is returned.

class mclf.curves.smooth_projective_curves.SmoothProjectiveCurve(F, k=None,
as-
sume_regular=False)

Bases: SageObject

Return the smooth projective curve with function field 𝐹 .

INPUT:

• F – a function field, or an irreducible bivariate polynomial over a field

• k – a field which has a natural embedding into the constant base field of 𝐹 , such that the constant base
field is a finite extension of k (or None).

• assume_regular – a boolean (default: False)

OUTPUT:

the smooth projective curve 𝑋 with function field 𝐹 . If 𝐹 is an irreducible bivariate polynomial, we use the
function field with two generators and relation 𝐹 .

If 𝑘 is given, then 𝑋 is considered as a 𝑘-scheme. If 𝑘 is not given then we use the field of constants of 𝐹
instead.

NOTE:

6 Chapter 1. Curves

MCLF Documentation

At the moment, 𝑘 should only be different from the constant base field of 𝐹 if 𝑘 is finite (because it is then easy
to compute the degree of the degree of the constant base field of 𝐹 over 𝑘).

compute_separable_model()
Compute a separable model of the curve (if necessary).

OUTPUT: None

This function only has to be called only once. It then decides whether or not the function field of the curve
is given as a separable extension of the base field or not. If it is not separable then we compute a separable
model, which is a tripel (𝑌1, 𝜑, 𝑞) where

• 𝑌1 is a smooth projective curve over the same constant base field 𝑘 as the curve 𝑌 itself, and which is
given by a separable extension,

• 𝜑 is a field homomorphism from the function field of 𝑌1 into the function field of 𝑌 corresponding to
a purely inseparable extension,

• 𝑞 is the degree of the extension given by 𝜑, i.e. the degree of inseparability of the map 𝑌 → 𝑌1 given
by 𝜑. Note that 𝑞 is a power of the characteristic of 𝑘.

constant_base_field()
Return the constant base field.

coordinate_functions()
Return a list of coordinate functions.

By ‘list of coordinate functions’ we mean elements 𝑓𝑖 in the function field, such that the map

𝑥 ↦→ (𝑓1(𝑥), . . . , 𝑓𝑛(𝑥))

from 𝑋 to (P1)𝑛 is injective.

Note that this map may not be an embedding, i.e. image of this map may not be a smooth model of the
curve.

count_points(d)
Return number of points of degree less or equal to d.

INPUT:

• d – an interger ≥ 1

OUTPUT:

a list N, where N[i] is the number of points on self of absolute degree 𝑖, for 𝑖 = 1, .., 𝑑.

Recall that the absolute degree of a point is the degree of the residue field of the point over the constant
base field (not over the field of constants).

This is a very slow realization and should be improved at some point.

covering_degree()
Return the degree of this curve as a covering of the projective line.

degree(D)
Return the degree of the divisor D.

Note that the degree of 𝐷 is defined relative to the field of constants of the curve.

degree_of_inseparability()
Return the degree of inseparability of this curve.

OUTPUT: positive integer, which is a power of the characteristic of the function field of this curve.

1.1. Smooth projective curves over a field. 7

MCLF Documentation

divisor_of_poles(f)
Return the divisor of poles of f.

divisor_of_zeroes(f)
Return the divisor of zeroes of f.

fiber(v0)
Return the set of points lying above a point on the projective line.

INPUT:

• v0 – a function field valuation on the rational function field

OUTPUT:

a list containing the points on this curve 𝑌 corresponding to extensions of v0 to the function field of 𝑌 .

field_of_constants()
Return the field of constants of this curve.

If 𝐹 is the function field of the curve and 𝑘 the constant base field, then the field of constants is the algebraic
closure of 𝑘 in 𝐹 .

For the moment, this is implemented only if the constant base field is a finite field.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(GF(2))
sage: R.<y> = F[]
sage: G = (y+x)^4 + (y + x) + 1
sage: F1.<y> = F.extension(G)
sage: Y1 = SmoothProjectiveCurve(F1)
sage: Y1.field_of_constants()
Finite Field in z4 of size 2^4

field_of_constants_degree()
Return the degree of the field of constants over the constant base field.

If 𝐹 is the function field of the curve and 𝑘 the constant base field, then the field of constants 𝑘𝑐 is the
algebraic closure of 𝑘 in 𝐹 .

If 𝑘 is a finite field then we actually compute the field of constants, and the result is provably correct. If 𝑘
is a number field, then we use a heuristic method: we find at least 10 different primes of 𝑘 for which the
reduction of the defining equation remains irreducible, and then we apply the method for finite fields to
the reduced equation. The result is very likely the true degree of the field of constants, and if the result is
equal to 1 then it is provably correct.

EXAMPLES:

sage: from mclf import *
sage: k = GF(2^3)
sage: F.<x> = FunctionField(k)
sage: R.<y> = F[]
sage: G = (y+x)^4 + (y+x) + 1
sage: F1.<y> = F.extension(G)
sage: Y1 = SmoothProjectiveCurve(F1, GF(2))
sage: Y1.field_of_constants_degree()
12
sage: F.<x> = FunctionField(QQ)
sage: R.<y> = F[]
sage: G = y^4 + x*y + 1

(continues on next page)

8 Chapter 1. Curves

MCLF Documentation

(continued from previous page)

sage: F2.<y> = F.extension(G)
sage: Y2 = SmoothProjectiveCurve(F2)
sage: Y2.field_of_constants_degree()
1
sage: R.<y> = F[]
sage: G = (y+x)^3 + (y+x) + 1
sage: F3.<y> = F.extension(G)
sage: Y3 = SmoothProjectiveCurve(F3)
sage: Y3.field_of_constants_degree()
3
sage: Y3.genus()
0

Todo:

• implement a deterministic algorithm for number fields

function_field()
Return the function field of the curve self.

genus(use_reduction=True)
Return the genus of the curve.

INPUT:

• use_reduction – a boolean (default: True)

OUTPUT: the genus of this curve.

The genus of the curve is defined as the dimension of the cohomology group 𝐻1(𝑋,𝒪𝑋), as a vector
space over the field of constants ‘k_c‘.

The genus 𝑔 of the curve𝑋 is computed using the Riemann-Hurwitz formula, applied to the cover𝑋 → P1

corresponding to the underlying realization of the function field of 𝑋 as a finite separable extension of a
rational function field. See:

• Hartshorne, Algebraic Geometry, Corollary IV.2.4

If the constant base field is finite, we compute the degree of the ‘ramification divisor’. If it is not, we
assume that the characteristic is zero, and we use the ‘tame’ Riemann Hurwitz Formula.

If the curve is defined over a number field, and use_reduction is True (the default) then the genus of
a reduction of this curve to some prime of good reduction is computed. This may be consderably faster.

EXAMPLES:

sage: from mclf import *
sage: F0.<x> = FunctionField(GF(2))
sage: R.<T> = F0[]
sage: G = T^2 + T + x^3 + x + 1
sage: F.<y> = F0.extension(G)
sage: Y = SmoothProjectiveCurve(F)
sage: Y.genus()
1
sage: G = T^2 + x^3 + x + 1
sage: F.<y> = F0.extension(G)
sage: Y = SmoothProjectiveCurve(F)

(continues on next page)

1.1. Smooth projective curves over a field. 9

MCLF Documentation

(continued from previous page)

sage: Y.genus()
0

good_reduction(v_p)
Return the reduction of this curve at a prime of good reduction.

INPUT:

• v_p – a discrete valuation on the constant base field 𝐾

OUTPUT: the reduction of this curve with respect to 𝑣𝑝, assuming that this is again a smooth projective
curve of the same genus. Otherwise, an error is raised.

Note that we just reduce the plane equation for this curve with respect to 𝑣𝑝. This is a very naive notion of
good reduction. If it works, then the curve does indeed have good reduction at 𝑣𝑝, and the result is correct.

is_separable()
Check whether this curve is represented as a separable cover of the projective line.

phi()
Return the natural embedding of the function field of the separable model into the function field of this
curve.

OUTPUT: a field homomorphism

plane_equation()
Return the plane equation of this curve.

OUTPUT:

A polynomial in two variables over the constant base field which defines the plane model of this curve,
where the first variable corresponds to the base field F0.

point(v)
Returns the point on the curve corresponding to v.

INPUT:

• v – a discrete valuation on the function field of the curve

OUTPUT:

The point on the curve corresponding to v. The valuation 𝑣 must be trivial on the constant base field.

points_with_coordinates(a)
Return all points with given coordinates.

INPUT:

• a – a tupel of coordinates, of lenght 𝑛, at most the number of coordinate functions of the curve

OUTPUT:

a list containing all points on the curve whose first 𝑛 coordinate values agree with a.

potential_branch_divisor()
Return list of valuations containing the branch locus.

OUTPUT:

A list of pairs (𝑣, 𝑑)′, 𝑤ℎ𝑒𝑟𝑒 runs over a list of valuations of the base field 𝐹0 = 𝐾(𝑥) containing all the
valuations corresponding to a branch point of the cover of curves, and 𝑑 is the degree of 𝑣.

10 Chapter 1. Curves

MCLF Documentation

prime_of_good_reduction()
Return a prime ideal where this curve has good reduction.

OUTPUT:

We assume that the constant base field 𝐾 is a number field. We return a discrete valuation 𝑣 on 𝐾 such
that the following holds:

• all the coefficients of the plane equation 𝐺(𝑥, 𝑦) = 0 of this curve are 𝑣-integral

• the reduction of𝐺 to the residue field of 𝑣 is irreducible and defines a plane curve with the same genus
as the original curve.

Note that this implies that 𝑣 is inert in the field of constants of the curve.

EXAMPLES:

sage: from mclf import *
sage: R.<T> = QQ[]
sage: K.<zeta> = NumberField(T^2+T+1)
sage: A.<x,y> = K[]
sage: X = SmoothProjectiveCurve(y^3 - y - x^2 + 1 + zeta)
sage: X.prime_of_good_reduction()
5-adic valuation
sage: X.good_reduction(_)
the smooth projective curve with Function field in y defined by y^3 + 4*y +
→˓4*x^2 + u1 + 1

principal_divisor(f)
Return the principal divisor of f.

INPUT:

• f – a nonzero element of the function field of self

OUTPUT: the principal divisor 𝐷 = (𝑓). This is a list of pairs (𝑃,𝑚), where 𝑃 is a point and 𝑚 is an
integer.

ramification_divisor()
Return the ramification divisor of self.

OUTPUT:

The ramification divisor of the curve, if the curve is given by a separable model. Otherwise, an error is
raised.

So the function field of of the curve is a finite separable extension of a rational function field. Geometri-
cally, this means that the curve 𝑋 is represented as a separable cover of the projective line. The ramifica-
tion divisor of this cover is supported in the set of ramification points of this cover. Sheaf theoretically, the
divisor represents the sheaf of relative differentials. See:

• Hartshorne, Algebraic Geometry, Definition IV.2.

random_point()
Return a random closed point on the curve.

rational_function_field()
Return the rational function field underlying the function field of 𝑋 .

By definition, the function field 𝐹𝑋 of the curve 𝑋 is a finite separable extension of a rational function
field 𝑘(𝑥), where 𝑘 is the base field of 𝑋 .

separable_model()
Return the separable model of this curve.

1.1. Smooth projective curves over a field. 11

MCLF Documentation

OUTPUT: a smooth projective curve over the same constant base field

The separable model of this curve 𝑌 is a curve 𝑌𝑠 defined over the same constant base field and whose
defining equation realizes 𝑌𝑠 as a finite separable cover of the projective line. It comes equipped with a
finite, purely inseparable morphism 𝑌 → 𝑌𝑠. In particular, 𝑌𝑠 has the same genus as 𝑌 .

The inclusion of function fields 𝜑 : 𝐹 (𝑌𝑠) → 𝐹 (𝑌) can be accessed via the method phi(), the degree of
the extension 𝑌/𝑌𝑠 via the method degree_of_inseparability.

singular_locus()
Return the singular locus of the affine model of the curve.

OUTPUT:

a list of discrete valuations on the base field 𝑘(𝑥) which represent the 𝑥-coordinates of the points where
the affine model of the curve given by the defining equation of the function field may be singular.

structure_map()
Return the canonical map from this curve to the projective line.

zeta_function(var_name=’T’)
Return the Zeta function of the curve.

For any scheme 𝑋 of finite type over Z, the arithmetic zeta funtion of 𝑋 is defined as the product

𝜁(𝑋, 𝑠) :=
∏︁
𝑥

1

1 −𝑁(𝑥)−𝑠
,

where 𝑥 runs over over all closed points of 𝑋 and 𝑁(𝑥) denotes the cardinality of the residue field of 𝑥.

If 𝑋 is a smooth projective curve over a field with 𝑞 elements, then 𝜁(𝑋, 𝑠) = 𝑍(𝑋, 𝑞−𝑠), where 𝑍(𝑋,𝑇)
is a rational function in 𝑇 of the form

𝑍(𝑋,𝑇) =
𝑃 (𝑇)

(1 − 𝑇)(1 − 𝑞𝑇)
,

for a polynomial 𝑃 of degree 2𝑔, with some extra properties reflecting the Weil conjectures. See:

• Hartshorn, Algebraic Geometry, Appendix C, Section 1.

Note that that this makes only sense if the constant base field of self is finite, and that 𝑍(𝑋,𝑇) depends on
the choice of the constant base field (unlike the function 𝜁(𝑋, 𝑠)!).

mclf.curves.smooth_projective_curves.absolute_degree(K)
Return the absolute degree of a (finite) field.

mclf.curves.smooth_projective_curves.compute_value(v, f)
Return the value of f at v.

INPUT:

• v – a function field valuation on 𝐹

• f – an element of 𝐹

OUTPUT: The value of f at the point corresponding to v.

This is either an element of the residue field of the valuation v (which is a finite extension of the base field of
𝐹), or ∞.

mclf.curves.smooth_projective_curves.e_f_of_valuation(v)
Return the ramification index of this valuation.

INPUT:

• v – a function field valuation on an extension of a rational function field

12 Chapter 1. Curves

MCLF Documentation

OUTPUT: the ramification index of 𝑣 over the base field

mclf.curves.smooth_projective_curves.extension_degree(K, L, check=False)
Return the degree of the field extension.

INPUT:

• K, L – two fields, where K has a natural embedding into L

• check (default: False) – boolean

OUTPUT:

the degree [𝐿 : 𝐾]

At the moment, this works correctly only if 𝐾 and 𝐿 are finite extensions of a common base field. It is not
checked whether 𝐾 really maps to 𝐿.

mclf.curves.smooth_projective_curves.extension_of_finite_field(K, n)
Return a field extension of this finite field of degree n.

INPUT:

• K – a finite field

• n – a positive integer

OUTPUT: a field extension of 𝐾 of degree 𝑛.

This function is useful if 𝐾 is constructed as an explicit extension 𝐾 = 𝐾0[𝑥]/(𝑓); then K.extension(n)
is not implemented.

Note: This function should be removed once trac.sagemath.org/ticket/26103 has been merged.

mclf.curves.smooth_projective_curves.field_of_constant_degree_of_polynomial(G,
re-
turn_field=False)

Return the degree of the field of constants of a polynomial.

INPUT:

• G – an irreducible monic polynomial over a rational function field

• return_field – a boolean (default:𝐹𝑎𝑙𝑠𝑒)

OUTPUT: the degree of the field of constants of the function field defined by G. If return_field is True
then the actual field of constants is returned. This is currently implemented for finite fields only.

This is a helper function for SmoothProjectiveCurve.field_of_constants_degree.

mclf.curves.smooth_projective_curves.make_finite_field(k)
Return the finite field isomorphic to this field.

INPUT:

• k – a finite field

OUTPUT: a triple (𝑘1, 𝜑, 𝜓) where 𝑘1 is a ‘true’ finite field, 𝜑 is an isomorphism from 𝑘 to 𝑘1 and 𝜓 is the
inverse of 𝜑.

This function is useful when 𝑘 is constructed as a tower of extensions with a finite field as a base field.

Note: This function should be removed once trac.sagemath.org/ticket/26103 has been merged.

1.1. Smooth projective curves over a field. 13

MCLF Documentation

mclf.curves.smooth_projective_curves.separate_points(coordinate_functions, valua-
tions)

Add new coordinate functions to separate a given number of points.

INPUT:

• coordinate_functions – a list of elements of a function field 𝐹

• valuations – a list of function field valuations on 𝐹

OUTPUT: enlarges the list coordinate_functions in such a way that the lists [value(v,x) for x
in coordinate_functions], where v runs through valuations, are pairwise distinct.

mclf.curves.smooth_projective_curves.separate_two_points(v1, v2)
Return a rational function which separates two points

INPUT:

• v1, v2 – discrete, nonequivalent valuations on a common function field 𝐹

OUTPUT:

An element 𝑓 of 𝐹 which takes distinct values at the two points corresponding to v1 and v2.

mclf.curves.smooth_projective_curves.sum_of_divisors(D1, D2)
Return the sum of the divisors D1 and D2.

INPUT:

• D1, D2: divisors on the same curve 𝑋

OUTPUT:

𝐷1 is replaced by the sum 𝐷1 +𝐷2 (note that this changes 𝐷1!).

Here a divisor 𝐷 is given by a dictionary with entries (a:(P,m)), where a is a coordinate tupel, P is a point
on 𝑋 with coordinates a and m is the multiplicity of P in 𝐷.

1.2 Morphisms of smooth projective curves

This module defines a class MorphismOfSmoothProjectiveCurves which realizes finite and nonconstant
morphism between smooth projective curves.

Let 𝑌 and𝑋 be smooth projective curves, with function fields 𝐹𝑌 and 𝐹𝑋 , respectively. Then a nonconstant morphism

𝑓 : 𝑌 → 𝑋

is completely determined by the induced pullback map on the function fields,

𝜑 = 𝑓* : 𝐹𝑋 → 𝐹𝑌 .

It is automatic that 𝐹𝑌 is a finite extension of 𝜑(𝐹𝑋) and that the morphism 𝜑 : 𝑌 → 𝑋 is finite.

Note: For the time being, this module is in a very preliminary state. A morphism 𝜑 : 𝑌 → 𝑋 as above can be
constructed only in the following two special cases:

• 𝑋 and 𝑌 are two projective lines; then 𝐹𝑋 and 𝐹𝑌 are rational function fields in one variable.

• the map 𝑓 : 𝑌 → 𝑋 is the structure map of the curve 𝑌 ; by this we mean that 𝑋 is the projective line 𝑓 the
canonical morphism realizing 𝑌 as a cover of 𝑋 .

14 Chapter 1. Curves

MCLF Documentation

Moreover, the role of the constant base fields of the two curves still needs to be clarified.

AUTHORS:

• Stefan Wewers (2018-1-1): initial version

EXAMPLES:

sage: from mclf import *
sage: FX.<x> = FunctionField(QQ)
sage: R.<y> = FX[]
sage: FY.<y> = FX.extension(y^2-x^3-1)
sage: X = SmoothProjectiveCurve(FX)
sage: Y = SmoothProjectiveCurve(FY)
sage: phi = MorphismOfSmoothProjectiveCurves(Y, X)
sage: phi
morphism from the smooth projective curve with Function field in y defined by y^2 - x^
→˓3 - 1
to the smooth projective curve with Rational function field in x over Rational Field,
determined by Coercion map:

From: Rational function field in x over Rational Field
To: Function field in y defined by y^2 - x^3 - 1

sage: x0 = PointOnSmoothProjectiveCurve(X, FX.valuation(x-1))
sage: phi.fiber(x0)
[Point on the smooth projective curve with Function field in y defined by y^2 - x^3 -
→˓1 with coordinates (1, u1).]

class mclf.curves.morphisms_of_smooth_projective_curves.MorphismOfSmoothProjectiveCurves(Y,
X,
phi=None)

Bases: SageObject

Return the morphism between two smooth projective curves corresponding to a given morphism of function
fields.

INPUT:

• Y, X – two smooth projective curves

• phi – a morphism from the function field of 𝑋 into the function field of 𝑌 , or None (default: None)

OUTPUT: the morphism 𝑓 : 𝑌 → 𝑋 corresponding to the given morphism of function fields.

If no morphism of function fields is given then it is assumed that the function field of 𝑋 is the canonical rational
subfield of the function field of 𝑌 . This means that map 𝑓 : 𝑌 → 𝑋 is the structure map of 𝑌 as a cover of the
projective line. If this is not the case then an error is raised.

Note: At the moment only the following two special cases are implemented:

• the map 𝑌 → 𝑋 is equal to the structural morphism of 𝑌 as a cover of the projective line; in particular, 𝑋
is a projective line

• 𝑋 and 𝑌 are both projective lines

EXAMPLES:

We define a rational map between two projective lines and compute the fiber of a point on the target:

1.2. Morphisms of smooth projective curves 15

MCLF Documentation

sage: from mclf import *
sage: FX.<x> = FunctionField(QQ)
sage: FY.<y> = FunctionField(QQ)
sage: X = SmoothProjectiveCurve(FX)
sage: Y = SmoothProjectiveCurve(FY)
sage: phi = FY.hom(x^2+1)
sage: psi = MorphismOfSmoothProjectiveCurves(X, Y, phi)
sage: psi
morphism from the smooth projective curve with Rational function field in x over
→˓Rational Field
to the smooth projective curve with Rational function field in y over Rational
→˓Field,
determined by Function Field morphism:
From: Rational function field in y over Rational Field
To: Rational function field in x over Rational Field
Defn: y |--> x^2 + 1

sage: P = PointOnSmoothProjectiveCurve(Y, FY.valuation(y-2))
sage: psi.fiber(P)
[Point on the smooth projective curve with Rational function field in x over
→˓Rational Field with coordinates (1,).,
Point on the smooth projective curve with Rational function field in x over
→˓Rational Field with coordinates (-1,).]

The only other map that is allowed is the structure morphism of a curve as a cover of the projective line:

sage: R.<x> = GF(2)[]
sage: Y = SuperellipticCurve(x^4+x+1, 3)
sage: phi = Y.structure_map()
sage: X = phi.codomain()
sage: X
the smooth projective curve with Rational function field in x over Finite Field
→˓of size 2
sage: P = X.random_point()
sage: phi.fiber(P) # random
[Point on superelliptic curve y^3 = x^4 + x + 1 over Finite Field of size 2 with
→˓coordinates (0, 1).,
Point on superelliptic curve y^3 = x^4 + x + 1 over Finite Field of size 2 with
→˓coordinates (0, u1).]

codomain()
Return the codomain of this morphism.

domain()
Return the domain of this morphism.

fiber(P)
Return the fiber of this map over the point 𝑃 (without multiplicities).

INPUT:

• P – a point on the curve 𝑋 , the codomain of this morphism

OUTPUT: the fiber over 𝑃 , as a list of points of 𝑌 (the domain of this map)

fiber_degree(P)
Return the (absolute) degree of the fiber of this map over the point P.

INPUT:

• P – a point on the curve 𝑋 (the codomain of this morphism)

16 Chapter 1. Curves

MCLF Documentation

OUTPUT: the fiber degree over 𝑃 , the sum of the degrees of the points on 𝑌 (the domain of this morphism)
lying above 𝑃 . Here degree means absolute degree, i.e. with respect to the constant base field of 𝑌 (which
may differ from the field of constants).

is_structure_map()
Return True if this map is the structure map of the curve 𝑌 .

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = SmoothProjectiveCurve(F)
sage: phi = F.hom(x^2+1)
sage: f = MorphismOfSmoothProjectiveCurves(X, X, phi)
sage: f.is_structure_map()
False
sage: phi = F.hom(x)
sage: f = MorphismOfSmoothProjectiveCurves(X, X, phi)
sage: f.is_structure_map()
True

pullback(f)
Return the pullback of a function under this morphism.

pullback_map()
Return the induced inclusion of function fields.

1.3 Superelliptic curves

A superelliptic curve is a smooth projective curve over a field 𝐾 which is given generically by an equation of the form

𝑌 : 𝑦𝑛 = 𝑓(𝑥),

where 𝑛 ≥ 2 and 𝑓 ∈ 𝐾[𝑥] is a polynomial over 𝐾, of degree at least 2 (and of degree at least 3 if 𝑛 = 2). Let

𝑓 = 𝑐 ·
∏︁
𝑖

𝑓𝑚𝑖
𝑖

be the prime factorization of 𝑓 (where 𝑐 ∈ 𝐾× and the 𝑓𝑖 are monic, irreducible and pairwise distinct). We assume
that the gcd of the 𝑚𝑖 is prime to 𝑛. This means that the defining equation is irreducible and the curve 𝑌 can be
considered as a Kummer cover of 𝑋 = P1

𝐾 of degree 𝑛.

In this module we define a class SuperellipticCurve which is a subclasses of SmoothProjectiveCurve
and whose objects represent superelliptic curves as above.

AUTHORS:

• Stefan Wewers (2018-5-18): initial version

EXAMPLES:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^4-1, 3)
sage: Y
superelliptic curve y^3 = x^4 - 1 over Rational Field
sage: Y.genus()
3

(continues on next page)

1.3. Superelliptic curves 17

MCLF Documentation

(continued from previous page)

sage: Y.kummer_gen()
y
sage: Y.polynomial()
x^4 - 1
sage: Y.covering_degree()
3

Todo:

• override those methods of SmoothProjectiveCurve where we have a faster algorithm in the superelliptic
cases

class mclf.curves.superelliptic_curves.SuperellipticCurve(f, n, name=’y’)
Bases: mclf.curves.smooth_projective_curves.SmoothProjectiveCurve

Return the superelliptic curve with equation 𝑦𝑛 = 𝑓(𝑥).

INPUT:

• f – a nonconstant polynomial over a field 𝐾

• n – an integer ≥ 2

• name – a string (default ‘y’)

OUTPUT:

the smooth projective curve 𝑌 over 𝐾 given generically by the equation

𝑌 : 𝑦𝑛 = 𝑓(𝑥).

This means that the function field of 𝑌 is an extension of the rational function field in 𝑥 generated by an element
𝑦 (the Kummer generator) satisfying the above equation.

It is assumed that the gcd of the multiplicities of the irreducible factors of 𝑓 is prime to 𝑛. Thus, the curve 𝑌 is a
cover of P1

𝐾 of degree 𝑛. If this condition is not met, an error is raised. name is the name given to the Kummer
generator 𝑦.

covering_degree()
Return the covering degree.

If the curve is given by the equation 𝑦𝑛 = 𝑓(𝑥) then the covering degree degree is 𝑛.

kummer_gen()
Return the Kummer generator of this superelliptic curve.

If the curve is given by the equation 𝑦𝑛 = 𝑓(𝑥) then the Kummer generator is the element 𝑦 of the the
function field.

polynomial()
Return the polynomial defining this curve.

If the curve is given by the equation 𝑦𝑛 = 𝑓(𝑥) then 𝑓 is this polynomial.

18 Chapter 1. Curves

CHAPTER 2

The Berkovich line

2.1 The Berkovich line over a discretely valued field

Let 𝐾 be a field and 𝑣𝐾 a discrete valuation on 𝐾. Let 𝐹 = 𝐾(𝑥) be a rational function field over 𝐾. We consider 𝐹
as the function field of the projective line P1

𝐾 over 𝐾. Let 𝑋 denote the (𝐾, 𝑣𝐾)-analytic space associated to P1
𝐾 . We

call 𝑋 the Berkovich line with respect to 𝑣𝐾 .

Note that we do not assume 𝐾 to be complete with respect to 𝑣𝐾 . This allows us to work with ‘exact’ fields, e.g.
number fields. As the ‘official’ definition of 𝐾-analytic spaces requires 𝐾 to be complete, 𝑋 is really defined over the
completion �̂� with respect to 𝑣𝐾 . We do have a continous map

𝜋 : 𝑋 → P1
𝐾

whose role we discuss below.

We systematically work with additive pseudo-valuations instead of multiplicative seminorms. Thus, we identitfy a
point 𝜉 ∈ 𝑋 with a (real valued) pseudo-valuation 𝑣𝜉 on 𝐹 extending 𝑣𝐾 ,

𝑣𝜉 : 𝐹 → R ∪ {±∞},

as follows: the subring

𝒪𝜉 := {𝑓 ∈ 𝐹 | 𝑣𝜉(𝑓) > −∞}

is a local subring of 𝐹 , with maximal ideal

m𝜉 := {𝑓 ∈ 𝐹 | 𝑣𝜉(𝑓) = ∞}.

Then 𝑣𝜉 induces a discrete valuation on the residue field

𝐾(𝜉) := 𝒪𝜉/m𝜉.

There are only two kind of points which are relevant for us and which we can represent and compute with:

19

MCLF Documentation

• points of type I, which are moreover algebraic: these are the points 𝜉 ∈ 𝑋 such that 𝜉 := 𝜋(𝜉) is a closed point
on P1

𝐾 . Then 𝒪𝜉 is the local ring and 𝐾(𝜉) the residue field of 𝜉. Since 𝐾(𝜉)/𝐾 is a finite field extension, there
are finitely many extensions of 𝑣𝐾 to a discrete valuation on 𝐾(𝜉); the point 𝜉 ∈ 𝜋−1(𝜉) corresponds precisely
to the valuation induces by 𝑣𝜉.

• points of type II: these are the points 𝜉 such that 𝑣𝜉 is a discrete valuation on 𝐹 . In particular, the local ring 𝒪𝜉 is
equal to 𝐹 and the image 𝜉 := 𝜋(𝜉) is the generic point of P1

𝐾 . A we see below, a point 𝜉 of type II corresponds
to a discoid, a certain type of affinoid subdomain of 𝑋 .

Our choice of the generator 𝑥 of the function field 𝐹 , which we keep fixed throughout, yields certain distinguished
subsets and points of 𝑋 , as follows.

The unit disk is the subset

D := {𝜉 ∈ 𝑋 | 𝑣𝜉(𝑥) ≥ 0}.

Note that a point 𝜉 ∈ D is uniquely determined by the restriction of 𝑣𝜉 to the polynomial ring 𝐾[𝑥].

The Gauss point is the point 𝜉𝑔 ∈ D of type II corresponding to the Gauss valuation on 𝐾[𝑥], with respect to 𝑣𝐾 , i.e.
by

𝑣𝜉𝑔 (
∑︁
𝑖

𝑎𝑖𝑥
𝑖) = min

𝑖
𝑣𝐾(𝑎𝑖).

The second distinguished is the point at infinity, denoted ∞ ∈ 𝑋 . It is the unique point of type I such that 𝜋(∞) is the
‘usual’ point at infinity on the projective line, with respect to the parameter 𝑥. It is characterized by the condition

𝑣∞(
1

𝑥
) = ∞.

By a result of Berkovich, the topological space 𝑋 is a simply connected quasi-polyhedron. Among other things this
means that for any two points 𝜉1, 𝜉2 ∈ 𝑋 there exists a unique closed subset

[𝜉1, 𝜉2] ⊂ 𝑋

which is homeomorphic to the unit interval [0, 1] ⊂ R in such a way that 𝜉1, 𝜉2 are mapped to the endpoints 0, 1. It
follows that 𝑋 has a unique partial ordering determined by the following two conditions:

• the Gauss point 𝜉𝑔 is the smallest element

• we have 𝜉1 < 𝜉2 if and only if 𝜉2 lies in a connected component of 𝑋 − {𝜉1} which does not contain 𝜉𝑔 .

A point 𝜉 of type II has a discoid representation as follows. If 𝜉 = 𝜉𝑔 then 𝐷𝜉𝑔 := D is defined as the unit disk.
Otherwise, 𝐷𝜉 is defined of the set of all points 𝜉1 ∈ 𝑋 such that 𝜉 ≤ 𝜉1. One can show that 𝐷𝜉 is then of the form

𝐷𝜉 = {𝜉1 | 𝑣𝜉1(𝑓) ≥ 𝑠},

where 𝑓 is a polynomial in 𝑥, irreducible over �̂� (or 𝑓 = 1/𝑥 if ∞ ∈ 𝐷𝜉) and 𝑠 is a rational number. The pair (𝑓, 𝑠)
determines 𝜉, but this representation is not unique. We call (𝑓, 𝑠) a discoid representation of 𝜉.

Conversely, if 𝐷 ⊂ 𝑋 is a discoid, i.e. an irreducible affinoid subdomain which becomes a union of closed disks over
a finite extension of 𝐾, then there exists a unique boundary point 𝜉 of 𝐷. We have 𝐷 = 𝐷𝜉 if and only if 𝐷 is a
standard discoid, i.e. it is either contained in or disjoint from the unit disk.

Note that we can simply extend the discoid representation to points of type I by allowing 𝑠 to take the value ∞. Then
𝐷𝜉 = {𝜉} for a point 𝜉 of type I.

AUTHORS:

• Stefan Wewers (2017-02-10): initial version

EXAMPLES:

20 Chapter 2. The Berkovich line

MCLF Documentation

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: X
Berkovich line with function field Rational function field in x over Rational Field
→˓with 2-adic valuation

We define a point of type II via its discoid.:

sage: xi1 = X.point_from_discoid(x^3 + 2, 3)
sage: xi1
Point of type II on Berkovich line, corresponding to v(x^3 + 2) >= 3

If the affinoid 𝑣(𝑓) ≥ 𝑠 is not irreducible, an error is raised.:

sage: X.point_from_discoid(x^2-1, 2)
Traceback (most recent call last):
...
AssertionError: D defined by f=x^2 - 1 and s=2 is not a discoid

We can similarly define points which do not lie on the unit disk.:

sage: xi2 = X.point_from_discoid(4*x+1, 1)
sage: xi2
Point of type II on Berkovich line, corresponding to v(4*x + 1) >= 1

The infimum of a point inside and a point outside the unit disk must be the Gauss point, corresponding to the unit
disk.:

sage: xi1.infimum(xi2)
Point of type II on Berkovich line, corresponding to v(x) >= 0
sage: X.gauss_point()
Point of type II on Berkovich line, corresponding to v(x) >= 0

Some points of type I are limit points, i.e. they can only be approximated by points of type II. For instance, the zeroes
of a polynomial which is irreducible over the ground field Q, but not over its completion Q2.:

sage: f = 2*x^2 + x + 1
sage: f.factor()
(2) * (x^2 + 1/2*x + 1/2)

sage: D = X.divisor(f)
sage: D
[(Point of type I on Berkovich space approximated by v(2*x + 1) >= 1, with equation
→˓4*x^2 + 2*x + 2 = 0,
1),

(Point of type I on Berkovich space approximated by v(x + 1) >= 1, with equation 4*x^
→˓2 + 2*x + 2 = 0,
1),

(The point at infinity on the Berkovich line, -2)]
sage: xi = D[0][0]
sage: xi.equation()
4*x^2 + 2*x + 2

Note that the point 𝜉 lies outside and its Galois conjugate point lies inside of the unit disk. This shows that issue #39
has been fixed.

2.1. The Berkovich line over a discretely valued field 21

MCLF Documentation

TO DO:

• more doctests!

class mclf.berkovich.berkovich_line.BerkovichLine(F, vK)
Bases: SageObject

The class of a Berkovich projective line over a discretely valued field.

Let 𝐾 be a field and 𝑣𝐾 a discrete valuation on 𝐾. Let 𝐹 = 𝐾(𝑥) be a rational function field over 𝐾. We
consider 𝐹 a the function field of the projective line 𝑋 over 𝐾. Let 𝑋 denote the (𝐾, 𝑣𝐾)-analytic space
associated to𝑋 . Then a point 𝜉 on𝑋 may be identified with a (real valued) pseudo-valuation 𝑣𝜉 on 𝐹 extending
𝑣𝐾 .

INPUT:

• F – a rational function field over a base field K

• vK – a discrete valuation on the base field K

find_zero(xi1, xi2, f)
Return the point between xi1 and xi2 where f has valuation 0.

INPUT:

• xi1, xi2 – points on the Berkovich line such that 𝜉1 < 𝜉2

• f – a nonconstant rational function; it is assumed that the signs of the valuations of f at 𝜉1 and
𝜉2 are different

OUTPUT:

The smallest point between 𝜉1 and 𝜉2 where the valuation of 𝑓 is zero.

NOTE:

We are assuming for the moment that the function

𝑣 ↦→ 𝑣(𝑓)

is affine (i.e. has no kinks) on the interval [𝜉1, 𝜉2].

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: xi1 = X.gauss_point()
sage: xi2 = X.point_from_discoid(x^4+2*x^2+2, 10)
sage: X.find_zero(xi1, xi2, (x^4+2*x^2+2)/4)
Point of type II on Berkovich line, corresponding to v(x^4 + 2*x^2 + 2) >= 2

sage: xi3 = X.point_from_discoid(4*x^4+2*x^2+1, 10)
sage: f = 2*x^3
sage: xi1.v(f), xi3.v(f)
(1, -1/2)
sage: X.find_zero(xi1, xi3, f)
Point of type II on Berkovich line, corresponding to v(1/x) >= 1/3

Todo: Remove the assumption on the kinks.

22 Chapter 2. The Berkovich line

MCLF Documentation

gauss_point()
Return the Gauss point of self.

The Gauss point is the type-II-point corresponding to the Gauss valuation on 𝐾[𝑥]. Its discoid is the unit
disk.

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: X.gauss_point()
Point of type II on Berkovich line, corresponding to v(x) >= 0

infty()
Return the point ∞.

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: X.infty()
The point at infinity on the Berkovich line

point_from_pseudovaluation(v)
Return the point on the Berkovich line corresponding to the pseudovaluation v.

INPUT:

• v – a discrete pseudovaluation on the function field of self, extending the base valuation 𝑣𝐾

OUTPUT:

The point 𝜉 on the Berkovich line 𝑋 =‘‘self‘‘ corresponding to the pseudo valuation v on the function
field of 𝑋 .

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: v = F.valuation(x)
sage: X.point_from_pseudovaluation(v)
Traceback (most recent call last):
...
AssertionError: v is not an extension of the base valuation

sage: v = F.valuation(GaussValuation(F._ring, v_2))
sage: X.point_from_pseudovaluation(v)
Point of type II on Berkovich line, corresponding to v(x) >= 0

point_from_pseudovaluation_on_polynomial_ring(v0, parameter=None)
Return the point corresponding to a pseudo-valuation on a polynomial ring.

INPUT:

• v0 – a discrete pseudo-valuation on a polynomial ring over the base field 𝐾, extending the base
valuation 𝑣𝐾

2.1. The Berkovich line over a discretely valued field 23

MCLF Documentation

• parameter – a parameter for the function field (default: None)

OUTPUT:

The point on this Berkovich line corresponding to v0, with respect to parameter. If parameter is
not given, we assume that it is the standard parameter 𝑥.

EXAMPLES:

sage: from mclf import *
sage: from sage.all import GaussValuation
sage: F.<x> = FunctionField(QQ)
sage: v2 = QQ.valuation(2)
sage: X = BerkovichLine(F, v2)
sage: v0 = GaussValuation(F._ring, v2)
sage: X.point_from_pseudovaluation_on_polynomial_ring(v0, 2*x)
Point of type II on Berkovich line, corresponding to v(x) >= 1

point_from_valuation(v)
Return the point corresponding to a discrete valuation.

INPUT:

• v – a discrete valuation on the function field of this Berkovich line

OUPUT:

The point corresponding to v.

If the restriction of 𝑣 to the constant base field is trivial, then we obtain a point of type I. Otherwise, the
restriction of 𝑣 to 𝐾 must be equivalent to the base valuation 𝑣𝐾 , and in this case we obtain a point of type
II.

EXAMPLES:

sage: from mclf.berkovich.berkovich_line import BerkovichLine
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: v = F.valuation(x^2+1/2)
sage: X.point_from_valuation(v)
Point of type I on Berkovich line given by x^2 + 1/2 = 0
sage: xi = X.point_from_discoid(x, 1/2)
sage: xi1 = X.point_from_valuation(xi.valuation())
sage: xi.is_equal(xi1)
True

class mclf.berkovich.berkovich_line.PointOnBerkovichLine
Bases: SageObject

A point on a Berkovich projective line.

We only allow two different types of points:

• Type I, algebraic: these are the points that come from a closed point on the (algebraic) projective line
over the completed base field.

• Type II: these are the points which correspond to discrete valuations on the function field whose
residue field is a function field over the residue base field

In particular, the Gauss valuation on 𝐹 = 𝐾(𝑥) with respect to the parameter 𝑥 corresponds t a point 𝜉𝑔 of type
II on 𝑋 which we call the Gauss point.

24 Chapter 2. The Berkovich line

MCLF Documentation

The set 𝑋 has a canonical partial ordering in which the Gauss point is the smallest elements. All point of type I
are maximal elements.

base_field()
Return the base field of this Berkovich line.

base_valuation()
Return the valuation on the base field of this Berkovich line.

berkovich_line()
Return the Berkovich line of which this point lies.

function_field()
Return the function field of this Berkovich line.

inverse_parameter()
Return the inverse parameter of the polynomial ring on which self is defined.

Let 𝜑 : 𝐹 → 𝐹 be the automorphism of the function field 𝐹 = 𝐾(𝑥) such that 𝑌 := 𝜑(𝑥) is the parameter
used to define self. Then the inverse parameter is 𝑧 := 𝜑−1(𝑥).

EXAMPLES:

sage: from mclf import *
sage: from sage.all import GaussValuation
sage: F.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(F, v_2)
sage: v0 = GaussValuation(F._ring, v_2)
sage: xi = X.point_from_pseudovaluation_on_polynomial_ring(v0, x/2)
sage: xi
Point of type II on Berkovich line, corresponding to v(1/x) >= 1
sage: xi.parameter()
1/x
sage: xi.inverse_parameter()
1/x

At the moment, only parameters y of the form c*x or 1/x are allowed.

sage: y = (2*x-1)/(x+2)
sage: xi = X.point_from_pseudovaluation_on_polynomial_ring(v0, y)
Traceback (most recent call last):
...
AssertionError: y must be c*x or 1/x

parameter()
Return the parameter of the polynomial ring on which self is defined.

The point self corresponds to a discrete pseudo-valuation 𝑣 which is the extension of a pseudo-valuation
𝑣0 on 𝐾[𝑦], where 𝑦 is the parameter in question.

class mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine(X, v)
Bases: mclf.berkovich.berkovich_line.PointOnBerkovichLine

A point of type II on a Berkovich line.

INPUT:

• X – a Berkovich line over a valued field K

• v – a discrete valuation on the function field of X extending the base valuation

2.1. The Berkovich line over a discretely valued field 25

MCLF Documentation

OUTPUT:

The type-II-point 𝜉 on 𝑋 corresponding to 𝑣.

It is also possible to replace v by a pair (v0, y), where v0 is a discrete valuation on a polynomial ring
𝐾[𝑥], and y is a parameter for the function field of the Berkovich line. Then 𝜉 is the point corresponding to the
valuation 𝑣 on the function field 𝐹 = 𝐾(𝑥) which pulls back to 𝑣0 via the inclusion 𝐾[𝑥] → 𝐹 that sends 𝑥 to
𝑦.

NOTE:

At the moment, we only allow the generators 𝑦 of the form 𝑐𝑥 or 1/𝑥.

approximation()
Return an approximation of self. For a point of type II, self is already an approximation of itself.

discoid(certified_point=None)
Return a representation of the discoid of which this type II point is the unique boundary point.

INPUT:

• certified_point (default=None) – this argument is not used for type-II-points

OUTPUT:

A pair (𝑓, 𝑠), where 𝑓 is a polynomial in the generator 𝑥 of the function field of 𝑋 which is irreducible
over �̂�, or 1/𝑥, and where 𝑠 is a nonnegative rational number. This data represents a discoid 𝐷 via the
condition 𝑣𝜉(𝑓) ≥ 𝑠.

Then self is the unique boundary point of 𝐷, and if, moreover, self is not the Gauss point then 𝐷
contains precisely the points 𝜉 which are greater or equal to self.

The representation (𝑓, 𝑠) is normalized as follows:

• if this point lies in the closed unit disk then 𝑓 is monic and integral, and 𝑠 ≥ 0. We either have
(𝑓, 𝑠) = (𝑥, 0) (if this point is the Gauss point and 𝐷 the closed unit disk) or 𝑠 > 0.

• if this point is not in the closed unit disk then 𝑠 > 0, and 𝑓 is either integral with constant term 1 and
only strictly positive slopes, or 𝑓 = 1/𝑥. In the first case, 𝐷 does not contain the point at infinity, in
the second case it does. In both cases, 𝐷 is disjoint from the closed unit disk.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(F, v_2)
sage: X.gauss_point().discoid()
(x, 0)
sage: X.infty().discoid()
(1/x, +Infinity)

improved_approximation()
Return an improved approximation of self.

This is meaningless for type-II-points, so self is returned.

is_gauss_point()
Return True if self is the Gauss point.

is_in_unit_disk()
True is self is contained in the unit disk.

26 Chapter 2. The Berkovich line

MCLF Documentation

is_inductive()
True if self corresponds to an inductive pseud-valuation. This is always true for points of type II.

is_infinity()
Check whether self is the point at infinity.

is_limit_point()
True is self corresponds to a limit valuation. This is never true for points of type II.

parameter()
Return the parameter with respect to which this point is defined.

This is either 𝑥 (if the point lies in the unit disk) or 1/𝑥 otherwise.

pseudovaluation()
Return the pseudovaluation corresponding to this point.

OUTPUT:

Since self is a point of type II, the output is a discrete valuation on the function field of the underlying
Berkovich line.

pseudovaluation_on_polynomial_ring()
Return the pseudo-valuation on the polynomial ring ‘K[y]’ corresponding to self, where 𝑦 is either 𝑥 or
1/𝑥 depending on whether self lies in the standard closed unit disk or not.

type()
Return the type of self.

valuation()
Return the valuation corresponding to this point.

OUTPUT:

The discrete valuation on the function field of the underlying Berkovich line corresponding to this point.

class mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine(X, v)
Bases: mclf.berkovich.berkovich_line.PointOnBerkovichLine

An algebraic point of type I.

INPUT:

• X – a Berkovich projective line over a valued field 𝐾

• v – an infinite discrete pseudovaluation on the function field 𝐹 = 𝐾(𝑥)

OUTPUT: a point of type I on X

Here the point 𝜉 on 𝑋 corresponds to the discrete pseudo-valuation 𝑣 on the function field 𝐹 = 𝐾(𝑥).

Alternatively, v can be a pair (𝑣0, 𝑦), where 𝑣0 is an infinite discrete pseudo-valuation on a polynomial ring
over 𝐾 and 𝑦 is a generator of the function field 𝐹 . Then 𝑣 is the infinite discrete pseudo-valuation of 𝐹 whose
restriction to the subring ring 𝐾[𝑦] is equal to 𝑣0.

approximation(certified_point=None, require_maximal_degree=False)
Return an approximation of this point.

INPUT:

• certified point (default=None) – a point on the Berkovich line

• require_maximal_degree (default=False) – boolean

OUTPUT:

2.1. The Berkovich line over a discretely valued field 27

MCLF Documentation

A a point which is inductive and approximates self, in such a way that we can distinguish self from
certified point.

If self is an inductive point, then self is returned. Otherwise, self is a limit point, and the output
is a point of type II greater or equal to self (i.e. corresponding to a discoid containing self). If
certified_point is not None and distinct from self, then the output is not greater or equal to
certified_point.

If require_maximal_degree is True then any approximation will have the same degree as the limit
point. Here the degree of an inductive point means the degree of the last key polynomial describing it, and
the degree of a type-I-point is the degree of its minimal polynomial.

discoid(certified_point=None)
Return a representation of a discoid approximating self.

INPUT:

• certified_point (default=None) – a point of type II

OUTPUT:

A pair (𝑓, 𝑠), where 𝑓 is a polynomial in the generator 𝑥 of the function field of𝑋 which is irreducible over
�̂�, or 𝑓 = 1/𝑥, and where 𝑠 is a nonrational number, or is equal to ∞. This data represents a (possibly
degenerate) discoid 𝐷 via the condition 𝑣𝜉(𝑓) ≥ 𝑠.

𝐷 as above is either the degenerate discoid with 𝑠 = ∞ which has self as the unique point, or 𝐷 is
an approximation of self (this simply means that self is contained in 𝐷). If certified_point is
given and is not equal to self then it is guaranteed that it is not contained in 𝐷.

We further demand that the discoid𝐷 is either contained in the closed unit disk, or is disjoint from it. Such
discoids correspond one-to-one to points of type II.

equation()
Return an equation for the Galois orbit of this point.

OUTPUT:

An element 𝑓 of the function field of𝑋 which is either an irreducible polynomial in the standard generator
𝑥, or is equal to 1/𝑥, and such that 𝑣𝜉(𝑓) = ∞.

function_field_valuation()
Return the function field valuation corresponding to this point

OUTPUT:

the discrete valuation on the function field 𝐹 = 𝐾(𝑥) which corresponds to the image of this point on
𝑋 = P1

𝐾 (which is, by hypothesis, a closed point).

improved_approximation()
Return an improved approximation of self.

is_gauss_point()
Return True if self is the Gauss point.

is_in_unit_disk()
True is self is contained in the unit disk.

is_inductive()
Check whether this points corresponds to an inductive valuation.

is_limit_point()
Check whether this point corresponds to a limit valuation.

28 Chapter 2. The Berkovich line

MCLF Documentation

pseudovaluation()
Return the pseudovaluation corresponding to this point.

OUTPUT:

a discrete pseudovaluation on the rational function field of the Berkovich line of which self is a point.

pseudovaluation_on_polynomial_ring()
Return the pseudovaluation representing self.

OUTPUT:

A discrete pseudovaluation on a polynomial subringring 𝐾[𝑦] from which self is induced. It is either
inductive or a limit valuation.

type()
Return the type of self

valuation()
Return the function field valuation corresponding to this point.

OUTPUT:

the normalized discrete valuation on the function field of the Berkovich line corresponding to this point of
type I.

This should not be confused with the pseudovaluation usually associated with a type-I-point.

EXAMPLES:

sage: from mclf.berkovich.berkovich_line import BerkovichLine
sage: F.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(F, v_2)
sage: X.gauss_point().valuation()
2-adic valuation
sage: xi = X.point_from_discoid(x+1, Infinity)
sage: xi.valuation()
(x + 1)-adic valuation

mclf.berkovich.berkovich_line.inverse_generator(y)
Return the inverse generator of a given generator of a rational function field.

INPUT:

• y - a generator of a rational function field 𝐹 = 𝐾(𝑥)

OUTPUT:

The inverse generator for 𝑦. So if 𝜑 : 𝐹 → 𝐹 is the automorphism of 𝐹 such that 𝜑(𝑥) = 𝑦 then 𝑧 := 𝜑−1(𝑥)
is the inverse generator.

mclf.berkovich.berkovich_line.is_generator(y)
Test whether an element is a generator of a rational function field.

INPUT:

• y - an element of a rational function field 𝐹 = 𝐾(𝑥)

OUTPUT:

True if 𝐹 = 𝐾(𝑦), False otherwise.

mclf.berkovich.berkovich_line.valuation_from_discoid(vK, f, s)
Return the inductive valuation corresponding to a discoid.

2.1. The Berkovich line over a discretely valued field 29

MCLF Documentation

INPUT:

• vK – a discrete valuation on a field 𝐾

• f – a nonconstant monic integral polynomial over 𝐾

• s – a nonnegative rational number, or ∞

OUTPUT:

an inductive valuation v on the domain of f, extending vK, corresponding to the discoid𝐷 defined by𝑤(𝑓) ≥ 𝑠.
In other words, this means that𝐷 defined above is irreducible (and hence a discoid), and 𝑣 is its unique boundary
point.

If 𝐷 is not irreducible, an error is raised.

EXAMPLES:

An example that created an error in a previous version:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: v_2 = QQ.valuation(2)
sage: f = x^6 - 8030/3241*x^5 + 24468979*x^4 + 14420644*x^3 + 24136511*x^2 +
→˓5386/1505*x + 3981/5297
sage: valuation_from_discoid(v_2, f, 76/15)
[Gauss valuation induced by 2-adic valuation, v(x + 1) = 2/3, v(x^3 + 3*x^2 +
→˓3*x - 3) = 38/15]
sage: _(f)
76/15

mclf.berkovich.berkovich_line.valuations_from_inequality(vK, f, s, v0=None)
Return the list of inductive valuations corresponding to the given inequlities.

INPUT:

• vK – a discrete valuation on a field 𝐾

• f – a nonconstant monic integral polynomial over 𝐾

• s – a nonnegative rational number, or ∞

• v0 – an inductive valuation on the parent of f (default: None)

OUTPUT:

a list of inductive valuations on the domain of f, extending vK, corresponding to the boundary points of the
irreducible components of the affinoid defined by the condition 𝑣(𝑓) ≥ 𝑠. Note that these components are all
discoids.

If 𝑣0 is given then the output only includes the valuations greater or equal to 𝑣0.

2.2 Finite subtrees of the Berkovich line

Let 𝐾 be a field and 𝑣𝐾 a discrete valuation on 𝐾. Let 𝑋 = P1
K be the projective line over 𝐾. Let 𝑋𝑎𝑛 denote the

(𝐾, 𝑣𝐾)-analytic space associated to 𝑋 . We call 𝑋𝑎𝑛 the Berkovich line over 𝐾.

Let 𝜉𝑔 be the Gauss point on 𝑋𝑎𝑛, corresponding to the Gauss valuation on the function field of 𝑋 with respect to the
canonical parameter 𝑥. Then 𝑋𝑎𝑛 has a natural partial ordering for which 𝜉𝑔 is the smallest element. With respect to
this partial ordering, any two elements have a unique infimum.

30 Chapter 2. The Berkovich line

MCLF Documentation

A Berkovich tree is a finite (nonempty) subset 𝑇 with the property that for any two elements in 𝑇 the infimum is also
contained in 𝑇 . In particular, a 𝑇 has a least element, called the root of the tree.

Given any finite subset 𝑆 of 𝑋𝑎𝑛, there is now a unique minimal subtree 𝑇 contaning 𝑆. We call 𝑇 the tree spanned
by 𝑆.

This module realizes finite subtrees of 𝑋𝑎𝑛 as combinatorial objects, more precisely as finite rooted combinatorial
trees. So a tree consists of a root, and a list of children. If the tree is a subtree of another tree, then there is a link to its
parent.

AUTHORS:

• Stefan Wewers (2017-02-13): initial version

EXAMPLES:

<Lots and lots of examples>

class mclf.berkovich.berkovich_trees.BerkovichTree(X, root=None, children=None,
parent=None)

Bases: SageObject

Create a new Berkovich tree 𝑇 .

INPUT:

• X – a Berkovich line

• root – a point of X (default: None)

• children – a list of Berkovich trees on X (default = None)

• parent – a Berkovich tree or None (default: None)

OUTPUT:

A Berkovich tree 𝑇 on 𝑋 with root root, children children and parent parent. 𝑇 may be empty (no root
and no children), but if there are children then there must be root.

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: T = BerkovichTree(X); T
Berkovich tree with 0 vertices
sage: xi = X.gauss_point()
sage: T.find_point(xi)

adapt_to_function(f)
Add all zeroes and poles of 𝑓 as leaves of the tree.

INPUT:

• f – a rational function on 𝑋

OUTPUT:

the new tree obtained by adding all zeroes and poles of 𝑓 as vertices to the old tree.

add_point(xi)
Return the tree spanned by self and the point xi.

INPUT:

2.2. Finite subtrees of the Berkovich line 31

MCLF Documentation

• xi – A point of type I or II on X

OUTPUT: 𝑇1, 𝑇2, where

• 𝑇1 is the tree obtained from 𝑇0 as a vertex.

• 𝑇2 is the subtree of 𝑇1 with root 𝜉

If 𝑇0 has a parent, then the root of 𝑇0 must be less than 𝜉. Therefore, the parent of 𝑇1 will be the original
parent of 𝑇0.

Note that this command may change the tree 𝑇0! For instance, 𝜉 may become the root of 𝑇1 and then 𝑇0
has 𝑇1 as new parent.

adjacent_vertices(xi0)
List all vertices of the tree adjacent to a given vertex.

berkovich_line()
Return the Berkovich line underlying this tree.

children()
Return the list of all children.

This is a deep copy of the internal list of children! Therefore, it cannot be used to change the tree.

copy()
Return a copy of self.

direction_from_parent()
Return the direction from the parent.

OUTPUT: the type V point 𝜂 representing the direction from the root of the parent of self to the root of
self.

If self has no parent, an error is raised.

direction_to_parent()
Return the direction to the parent.

OUTPUT: the type V point 𝜂 representing the direction from the root of self to the root of its parent.

If self has no parent, an error is raised.

The direction is not well defined if the root of self is a point of type I. Therefore, an error is raised in
this case.

find_point(xi)
Find subtree with root xi.

INPUT:

• xi – a point on the Berkovich line underlying self

OUTPUT:

The subtree 𝑇 of self with root xi, or None if xi is not a vertex of self.

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: T = BerkovichTree(X); T
Berkovich tree with 0 vertices

32 Chapter 2. The Berkovich line

MCLF Documentation

Searching in the empty tree does not give an error anymore.:

sage: xi = X.gauss_point()
sage: T.find_point(xi)

sage: T.add_point(xi)
(Berkovich tree with 1 vertices, Berkovich tree with 1 vertices)
sage: T.find_point(xi)
Berkovich tree with 1 vertices

graph()
Return a graphical representation of self.

OUTPUT:

G, vert_dict,

where G is a graph object and vert_dict is a dictionary associating to a vertex of G the corresponding vertex
of self.

has_parent()
Return True if self has a parent.

is_leaf()
Return True if self is a leaf.

leaves(subtrees=False)
Return the list of all leaves.

If subtrees is True, then we return the list of subtrees corresponding to the leaves.

make_child(new_child, check=True)
Make new_child a child of self.

INPUT:

• new_child – a Berkovich tree

• check – a boolean (default False)

We make the tree new_child a child of self. For this to make sense, two conditions have to be satisfied:

• the root of new_child has to be strictly greater than the root of self

• the root of new_child has to be incomparable to the roots of the already existing children of self

These conditions are checked only if check ist True.

Note:

This changes both trees self and new_child.

make_parent(parent)
add parent as parent of self.

parent()
Return the parent of self.

paths()
Return the list of all directed paths of the tree.

OUTPUT:

the list of all directed paths of the tree, as a list of pairs (𝜉1, 𝜉2), where 𝜉2 is a child of 𝜉1.

2.2. Finite subtrees of the Berkovich line 33

MCLF Documentation

permanent_completion()
Return the permanent completion of self.

OUTPUT:

A Berkovich tree 𝑇1 which is the permanent completion of self.

A Berkovich tree tree 𝑇 on a Berkovich line 𝑋 over (𝐾, 𝑣𝐾) is called permanently complete if for all
finite extensions (𝐿, 𝑣𝐿) of (𝐾, 𝑣𝐾), the inverse image of the set of vertices of 𝑇 in 𝑋𝐿 is again the set
of vertices of a Berkovich tree. It is easy to see that for any Berkovich tree 𝑇 there exists a minimal
refinement 𝑇1 which is permanently complete. It is called the permanent completion of 𝑇 .

ALGORITHM:

Let 𝜉0 be the root and 𝜉1, . . . , 𝜉𝑛 the leaves of 𝑇 . To compute 𝑇1 we consider, for 𝑖 = 1, . . . , 𝑛, the path
𝛾 = [𝜉0, 𝜉𝑛] and the function on 𝛾 which maps a point 𝜉 to the number of geometric components of the
discoid 𝐷𝜉. We add the jumps of this function to 𝑇 . Having done this for all 𝑖 we obtain the permant
completion 𝑇1 of 𝑇 .

EXAMPLES:

sage: from mclf import *
sage: FX.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(FX, v_2)
sage: xi0 = X.point_from_discoid(x^4+2, 5)
sage: T = BerkovichTree(X, xi0)
sage: T.permanent_completion()
Berkovich tree with 3 vertices

position(xi)
Find the position of xi in the tree T=self.

INPUT:

• xi – a point on the Berkovich line underlying T

OUTPUT:

xi1, T1, T2, is_vertex,

where

• xi1 is the image of xi under the retraction map onto the total space of T

• T1 is the smallest subtree of T whose total space contains xi1

• T2 is the child of T1 such that xi1 lies on the edge connecting T1 and T2 (or is equal to T1 if xi1 is
the root of T1)

• is_vertex is True if xi1 is a vertex of T (which is then the root of T1) or False otherwise

print_tree(depth=0)
Print the vertices of the tree, with identation corresponding to depth.

It would be nicer to plot the graph and then list the points corresponding to the vertices.

remove_child(child)
Remove child from list of children of self.

INPUT:

• child – a Berkovich tree

34 Chapter 2. The Berkovich line

MCLF Documentation

We remove child from the list of children of self. If child is not in this list, an error is raised.

Note:

This function changes both self and child.

remove_point(xi, test_inequality=True)
Remove a point from the tree, if possible.

INPUT:

• xi – a point of type I or II on the Berkovich line

• test_inequality -- a boolean (default: ``True)

OUTPUT:

the tree obtained from self by removing, if possible, the vertex with root 𝜉.

Removing the vertex with root 𝜉 is possible if a vertex with root 𝜉 exists, and if it has at most one child.
Otherwise, nothing is changed.

Note that the vertex to be removed may be the root of this tree. If this is the case and there is no child, then
an empty tree is return and the tree is remove as a child from its parent.

If test_inequality is False then it is assumed that 𝜉 is greater or equal to the root of self. This
saves us a test for inequality.

EXAMPLES:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, v_2)
sage: T = BerkovichTree(X)
sage: T, _ = T.add_point(X.gauss_point())
sage: T = T.remove_point(X.gauss_point()); T
Berkovich tree with 0 vertices
sage: xi_list = [xi for xi, m in X.divisor(x*(x^2+2))]
sage: for xi in xi_list: T, _ = T.add_point(xi)
sage: T
Berkovich tree with 5 vertices
sage: T.remove_point(xi_list[0])
Berkovich tree with 4 vertices

root()
Return the root of the tree.

subtrees()
Return the list of all subtrees.

vertices()
Return the list of all vertices.

mclf.berkovich.berkovich_trees.component_jumps(xi0, xi1)
Helper function for permanent_completion.

mclf.berkovich.berkovich_trees.create_graph_recursive(T, G, vertex_dict, root_index)
Create recursively a graph from a Berkovich tree.

mclf.berkovich.berkovich_trees.replace_subtree(T1, T2)
Replace a subtree of a Berkovich tree by another tree.

INPUT:

2.2. Finite subtrees of the Berkovich line 35

MCLF Documentation

• T1, T2 - Berkovich trees with the same root

It is assumed that 𝑇1 has a parent, so it is a proper subtree of an affinoid tree 𝑇0. We replace the subtree 𝑇1 with
𝑇2.

NOTE:

This changes the tree `T_0`; therefore this function must be
used carefully.

2.3 Points of type V on the Berkovich line.

Let 𝑋𝑎𝑛 be a Berkovich line over a discretely valued field 𝐾. A “point” 𝜂 of type V on 𝑋𝑎𝑛 corresponds to a pair
(𝑣, 𝑣), where 𝑣 is a type-II-valuation and 𝑣 is a function field valuation on the residue field of 𝑣. We call 𝑣 the “major
valuation” and 𝑣 the “minor valuation” associated to 𝜂.

Note that 𝜂 is not, properly speaking, a point on the analytic space 𝑋𝑎𝑛, but rather a point on the adic space 𝑋𝑎𝑑.

Equivalent ways to describe 𝜂 are:

• the rank-2-valuation given as the composition of 𝑣 and 𝑣

• a “residue class” on 𝑋𝑎𝑛; more precisely, 𝜂 corresponds to a connected component of 𝑋𝑎𝑛 − {𝜉}, where 𝜉 is
the type-II-point corresponding to 𝑣 (and then 𝜉 is the unique boundary point of the residue class)

• an “open discoid”: more precise, a pair (𝜑, 𝑠), where 𝜑 is a rational function such that the open discoid

𝐷 = {𝑣 | 𝑣(𝜑) > 𝑠}

is the residue class corresponding to 𝜂. Moreover, either 𝜑 of 1/𝜑 is a monic, integral and irreducible polynomial
in 𝑥 or in 1/𝑥.

• a “tangent vector” on 𝑋𝑎𝑛; more precisely a group homomorphism

𝜕 : 𝐾(𝑥)* → Z

with the following properties: let (𝜑, 𝑠) be the discoid representation of 𝜂. We define, for 𝑡 ≥ 𝑠, the valuation 𝑣𝑡 as the
valuation corresponding to the boundary point of the open discoid 𝑣(𝜑) > 𝑡. Then 𝜕(𝑓) is the right derivative at 𝑡 = 𝑠
of the function

𝑡 ↦→ 𝑣𝑡(𝑓).

The most convenient way to determine a point of type V is as follows. Let 𝜉1 be a point of type II and 𝜉2 be of type I
or II, distinct from 𝜉1. Then

𝜂 = 𝜂(𝜉1, 𝜉2)

is the point of type V corresponding to the connected component of 𝑋 − {𝜉1} containing 𝜉2. We call 𝜂 the direction
from 𝜉1 towards 𝜉2.

class mclf.berkovich.type_V_points.TypeVPointOnBerkovichLine(xi0, xi1)
Bases: SageObject

A point of type V on the Berkovich line.

Let 𝜉1 be a point of type II, and 𝜉2 a point of type I or II. Then we can define the point of type V 𝜂 := 𝜂(𝜉1, 𝜉2)
as the unique residue class with boundary point 𝜉1 containing 𝜉2.

INPUT:

36 Chapter 2. The Berkovich line

MCLF Documentation

• xi0 – point of type II

• xi1 – arbitrary point of X, distinct from xi0

OUTPUT:

The type-V-point corresponding to the connected component of 𝑋𝑎𝑛 − 𝜉0 which contains 𝜉1.

EXAMPLES:

sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(2)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)
sage: xi1 = X.point_from_discoid(x,1)
sage: xi2 = X.point_from_discoid(x^2+4,3)
sage: eta = TypeVPointOnBerkovichLine(xi1, xi2)

We see that eta represents an open disk inside the closed unit disk.

sage: eta
Point of type V given by residue class v(x + 2) > 1

Here is an example of a type-V-point representing an open disk in the complement of the closed unit disk:

sage: xi0 = X.gauss_point()
sage: xi3 = X.point_from_discoid(2*x+1, 2)
sage: eta = TypeVPointOnBerkovichLine(xi0, xi3)
sage: eta
Point of type V given by residue class v(1/x) > 0

We check that xi0 lies outside the open disk and xi3 inside:

sage: eta.is_in_residue_class(xi0)
False
sage: eta.is_in_residue_class(xi3)
True

sage: xi4 = X.point_from_discoid(2*x+1, 4)
sage: TypeVPointOnBerkovichLine(xi3, xi4)
Point of type V given by residue class v((2*x + 1)/x) > 3
sage: TypeVPointOnBerkovichLine(xi4, xi3)
Point of type V given by residue class v(1/2*x/(x + 1/2)) > -5

The following example shows that the minor valuation is computed correctly

sage: xi5 = X.point_from_discoid(1/x,1)
sage: eta = TypeVPointOnBerkovichLine(xi0,xi5)
sage: eta
Point of type V given by residue class v(1/x) > 0
sage: eta.minor_valuation()
Valuation at the infinite place

berkovich_line()
Return the Berkovich line underlying the point.

boundary_point()
Return the boundary point of the type-V-point.

2.3. Points of type V on the Berkovich line. 37

MCLF Documentation

minor_valuation()
Return the minor valuation of this type V point.

open_discoid()
Return the representation of self as an open discoid.

INPUT:

• self: a point of type V on a Berkovich line

OUTPUT:

a pair (𝜑, 𝑠), where 𝜑 is a rational function and 𝑠 a rational number is such that

𝐷 = {𝑣 ∈ 𝑋 | 𝑣(𝜑) > 𝑠}

is the open discoid representing the type-V-point self.

Either 𝜑 of 1/𝜑 is a monic, integral and strongly irreducible polynomial in 𝑥 or in 1/𝑥.

point_inside_discoid(t)
Return the point inside the residue class at the value 𝑡.

The type-V-point corresponds to an open discoid defined by

𝑣(𝜑) > 𝑠.

For for a rational number 𝑡 > 𝑠 we can define the type-II-point 𝜉𝑡 corresponding to the closed discoid
defined by

𝑣(𝜑) >= 𝑡.

If 𝑡 = ∞ we obtain the type-I-point corresponding to 𝜑 = 0.

INPUT:

• t – a rational number or Infinity

OUTPUT:

The point 𝜉𝑡 inside the residue class corresponding to the closed discoid defined by 𝑣(𝜑) >= 𝑡.

If 𝑡 <= 𝑠 then an error is raised.

2.4 Affinoid subdomains of the Berkovich line.

Let 𝐾 be a field, 𝑣𝐾 a discrete valuation on 𝐾 and 𝑋 the Berkovich line over 𝐾, with respect to 𝑣𝐾 .

In this file we realize a Sage class which allows us to create and work with strictly affinoid subdomains of 𝑋 .

Let 𝑇 be a Berkovich tree in 𝑋 and let 𝑟 : 𝑋 → 𝑇 denote the canonical retraction map. Let 𝑆 be a nonempty proper
subset of 𝑉 (𝑇). We define 𝑆 as the union of 𝑆 and of all edges connecting two points of 𝑆. Then the inverse image
𝑈 := 𝑟−1(𝑆) is an affinoid subdomain of 𝑋 . We use the notation 𝑈 = 𝑈(𝑇, 𝑆).

We say that a Berkovich tree 𝑇 supports an affinoid domain 𝑈 if there exists a nonempty proper subset 𝑆 of 𝑉 (𝑇)
with 𝑈 = 𝑈(𝑇, 𝑆). If this is the case then 𝑆 consists exactly of the vertices of 𝑇 which lie in 𝑈 .

Given any affinoid domain 𝑈 , there exists a unique minimal tree 𝑇 which supports 𝑈 . Moreover, every tree 𝑇 ′ which
contracts to 𝑇 ′ supports 𝑈 as well.

AUTHORS:

• Stefan Wewers (2017-07-29): initial version

38 Chapter 2. The Berkovich line

MCLF Documentation

EXAMPLES:

<Lots and lots of examples>

TO DO:

• more doctests

• add missing functions: intersection, ..

• see if we can remove some obsolete functions

• improve point_close_to_boundary

class mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine(T)
Bases: SageObject

Return the affinoid domain corresponding to the affinoid tree T.

Objects of this class represent (generic) affinoid domains on the Berkovich line.

INPUT:

• T – an affinoid tree

OUTPUT:

The affinoid corresponding to T.

EXAMPLES:

sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(2)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)

TO DO:

•

affinoid_subtree(xi0, is_in=None)
Return the affinoid subtree with given root.

This function is used inductively to construct a tree representing the affinoid 𝑈 , if such a tree is not
explicitly given, and the affinoid is defined in some other way (as a rational domain, or as a union of other
affinoid domains,..).

INPUT:

• xi0 - a point of type II

• is_in – a boolean, or None (default None)

OUTPUT: an affinoid tree with root 𝜉0 which represents the intersection of 𝑈 with 𝐷𝜉0 , the set of points
≥ 𝜉0 (a closed discoid with boundary point 𝜉0, or the full Berkovich line if 𝑥𝑖0 is the Gauss point).

If is_in is given, we assume it is equal to the truth value of “𝜉0 lies in this affinoid”. This is useful to
avoid an extra test for membership.

affinoid_subtree_in_hole(eta)
Return the affinoid subtree with given root.

This is a helper function for affinoid_subtree.

INPUT:

2.4. Affinoid subdomains of the Berkovich line. 39

MCLF Documentation

• eta - a point of type V

OUTPUT:

We assume that 𝜂 represents a downward hole of this affinoid 𝑈 . This means that the boundary point of 𝜂
lies in 𝑈 but 𝜂 does not. We return an affinoid tree 𝑇 whose root is the boundary point of 𝜂, representing
the affinoid

(𝑋∖𝐷𝜂) ∪ (𝐷𝜂 ∩ 𝑈)‘.

berkovich_line()
Return the Berkovich line underlying this affinoid.

boundary()
Return the Shilov boundary of the affinoid.

The Shilov boundary is a finite set of type-II-points contained in the affinoid with the property that the
valuative function of every rational function which is regular on the affinoid takes a minimum on this set.

The Shilov boundary is simply the union of the boundaries of the connected components.

components()
Return the list of connected components of this affinoid.

connected_component_tree(xi0)
Return the tree of the connected component of this affinoid with given root.

INPUT:

• xi0 – a point type II or V

OUTPUT:

If 𝜉0 is a point of type II, then we return an affinoid tree underlying the connected component of this
affinoid 𝑈 with minimal point 𝜉0.

It is assumed but not checked that 𝜉0 lies in this affinoid.

If 𝜉0 is of type V then we return the branch of this tree in the direction of 𝜉0. This has the effect of “filling
in all holes” which do not lie in the open discoid 𝐷𝜉0 . It does not correspond to the intersection with 𝐷𝜉0 .

Note:

This is the generic algorithm for the parent class AffinoidDomainOnBerkovichLine. It is assumed
that the underlying affinoid tree has already been computed. Otherwise we run into an infinite loop.

intersection(V)
Return the affinoid which is the intersection of self with V.

Not yet implemented.

intersection_with_unit_disk()
Return the intersection of this affinoid with the unit disk.

is_empty()
Return wether this affinoid is the empty set.

is_full_berkovich_line()
Return whether this affinoid is equal to the full Berkovich line.

is_in(xi)
Return whether xi lies on the affinoid.

INPUT:

40 Chapter 2. The Berkovich line

MCLF Documentation

• xi – a point of type I, II or V

OUTPUT:

True if xi lies on the affinoid, False otherwise.

minimal_points(xi0=None)
Return the minimal points of this affinoid greater than a given point.

INPUT:

• xi0 – a point of type II, or None (default None)

OUTPUT:

The list of all minimal points of this affinoid which are ≥ 𝜉0.

number_of_components()
Return the number of connected components of ths affinoid.

point_close_to_boundary(xi0)
Return a type-I-point inside the affinoid, close to xi0.

INPUT:

• xi0 – a boundary point of the affinoid self

OUTPUT:

A type-I-point xi1 on the affinoid 𝑈 := self which is “close” to the boundary point xi0.

The latter means that xi1 maps onto the irreducible components of the canonical reduction of 𝑈 corre-
sponding to xi0.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: U = rational_domain(X, 2/x/(x+1))
sage: U
Elementary affinoid defined by
v(1/x) >= -1
v(1/(x + 1)) >= -1
<BLANKLINE>

sage: xi0 = U.boundary()[0]
sage: U.point_close_to_boundary(xi0)
Point of type I on Berkovich line given by x + 2 = 0

At the moment, our choice of point close to the boundary is not optimal, as the following example shows:

sage: U = rational_domain(X, 2/(x^2+x+1))
sage: U
Elementary affinoid defined by
v(1/(x^2 + x + 1)) >= -1

sage: xi0 = U.boundary()[0]
sage: U.point_close_to_boundary(xi0)
Point of type I on Berkovich line given by x^2 + 3*x + 1 = 0

The point at infinity is also inside U and ‘close to the boundary’, and has smaller degree than the point
produced above.

2.4. Affinoid subdomains of the Berkovich line. 41

MCLF Documentation

The following raised an error in an earlier version

sage: f = (-2/25*x^6 - 4*x^5 - 1351/225*x^4 - 52/225*x^3 - 173/225*x^2 - 2/
→˓9*x + 2/3)/(x^2 + 2/3*x)
sage: h = valuative_function(X, f)
sage: U = h.affinoid_domain()
sage: U
Affinoid with 2 components:
Elementary affinoid defined by
v(x) >= 0
v(1/x) >= -1/2
Elementary affinoid defined by
v((2*x^2 + 1)/x^2) >= 2
<BLANKLINE>

sage: U.point_close_to_boundary(U.boundary()[1])
Point of type I on Berkovich line given by x^2 + 2 = 0

Todo:

• Use a better strategie to find a point of minimal degree.

simplify()
Simplify this affinoid.

This only changes the internal representation by an “affinoid tree”. Very likely, this is unnecessary because
the simplification has already occured when the affinoid was first constructed.

tree()
Return the Berkovich tree representing this affinoid.

union(V)
Return the affinoid which is the union of self with V.

Need new implementation.

class mclf.berkovich.affinoid_domain.AffinoidTree(X, root=None, children=None, par-
ent=None, is_in=False)

Bases: mclf.berkovich.berkovich_trees.BerkovichTree

A marked Berkovich tree representing an affinoid subdomain.

An AffinoidTree is a Berkovich tree 𝑇 in which every vertex has an additional flag “is_in” with value True or
False. It represents an affinoid subdomain 𝑈 in the way explained above.

INPUT:

• X – a Berkovich line

• root – a point on X or None (default = None)

• children – a list of affinoid trees or None (default = None)

• parent – an affinoid tree or none (default = None)

• is_in – a boolean or None (default = None)

OUTPUT:

An affinoid tree on X. It is either empty (if only X is given) or it has root, parent, children and the flag is_in as
given by the extra parameters.

EXAMPLES:

42 Chapter 2. The Berkovich line

MCLF Documentation

sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(2)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)

compute_connected_components(comp_list, new_comp)
Compute the connected components of the represented affinoid.

INPUT:

• comp_list – a list (of lists of lists)

• new_comp – a list (of lists)

OUTPUT:

• all connected components whose root is a vertex of T=‘‘self‘‘ are added to the list comp_list.

• all boundary_lists which belong to T and to the connected component which contains the root of T
are added to new_comp (in particular, if the root of T does not lie in the affinoid then the list is
unchanged).

Here a boundary list is a list of type-V-points which represent holes of the affinoid with a common bound-
ary point. A connected component is a list of boundary lists.

EXAMPLES:

sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(2)
sage: F.<x> = FunctionField(K)
sage: X = BerkovichLine(F, vK)

connected_components(xi0=None)
Return a list of affinoid trees representing the connected components below a given point.

INPUT:

• xi0 – a point of type II or V

OUTPUT:

A list of affinoid trees representing the connected components of the affinoid corresponding to this tree,
which are ≥ to the given point 𝜉0. If it is not given, then we ignore this condition.

Note that 𝜉0 may be of type V.

copy(parent=None)
Return a copy of self, force parent as parent.

WARNING! something is wrong with this function!!

holes(upward_hole=True)
Return the holes of this affinoid tree.

OUTPUT:

A list of triples (𝑇1, 𝑇2, 𝜂), where 𝑇1, 𝑇2 are subtrees of self and 𝜂 is a point of type V, satisfying the
following conditions:

• 𝑇2 is a child of 𝑇1, or vice versa

• the root of 𝑇1 is a boundary point of the affinoid underlying self

2.4. Affinoid subdomains of the Berkovich line. 43

MCLF Documentation

• the root of 𝑇2 does not lie in the affinoid

• 𝜂 is the direction from the root of 𝑇1 to the root of 𝑇2

This implies that 𝜂 is a hole of the affinoid represented by self.

intersection_with_unit_disk()
Return the tree representing the intersection with the unit disk.

is_in(xi)
Return True if xi lies in the affinoid 𝑈 represented by self.

INPUT:

• xi – a point on the Berekovich space underlying this affinoid tree

Note that 𝜉 may also be a point of type V.

To test this, we compute the image of xi under the retraction map onto the total space of T=self and check
whether it lies on a vertex in U or on an edge connecting two vertices in U.

minimal_points(xi0=None)
Return the minimal points of the affinoid corresponding to this tree.

INPUT:

• xi0 – a point of type II or V, or None (default None)

OUTPUT: the list of all minimal points of the affinoid corresponding to this tree, which are ≥ 𝜉0. If 𝜉0 is
not given, this condition is ignored.

Note that 𝜉0 may be of type V.

root_is_in()
Return whether the root of self lies in the affinoid.

show()
Display a graphical representation of self.

simplify()
Simplify this tree without changing the represented affinoid.

class mclf.berkovich.affinoid_domain.ClosedUnitDisk(X)
Bases: mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine

Return the closed unit disk.

The closed unit disk is the affinoid on the Berkovich line with function field 𝐹 = 𝐾(𝑥) defined by the inequality

𝑣(𝑥) >= 0.

INPUT:

• X – a Berkovich line

OUTPUT:

The closed unit disk inside X.

EXAMPLES:

sage: from mclf import *
sage: K = QQ
sage: vK = K.valuation(3)
sage: F.<x> = FunctionField(K)

(continues on next page)

44 Chapter 2. The Berkovich line

MCLF Documentation

(continued from previous page)

sage: X = BerkovichLine(F, vK)
sage: ClosedUnitDisk(X)
Elementary affinoid defined by
v(x) >= 0
<BLANKLINE>

class mclf.berkovich.affinoid_domain.ElementaryAffinoidOnBerkovichLine(T)
Bases: mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine

Return the elementary affinoid corresponding to a boundary list.

An “elementary affinoid” is a connected affinoid subdomain of a Berkovich line 𝑋 which is the complement of
a finite set of disjoint residue classes in 𝑋 . It can be represented by a “boundary list” as follows.

A “boundary list” is a list of lists, whose entries at the lowest level are type-V-points on𝑋 . Each sublist contains
the type-V-points with a common boundary point. The elementary affinoid corresponding to a “boundary list”
is the complement of the residue classes corresponding to the type-V-points contained in the sublists. The set of
boundary points of the type-V-points is exactly the Shilov boundary of the affinoid.

INPUT:

• boundary_list – a list of lists containing type-V-points.

OUTPUT:

The elementare affinoid corresponding to comp_list.

TO DO:

• we need a function which produces an (algebraic) type-I-point inside the affinoid.

inequalities()
Return the inequalities defining the elementary affinoid, as a string.

is_empty()
Return whether this affinoid is the empty set.

is_full_berkovich_line()
Return whether this affinoid is the full Beerkovich line.

class mclf.berkovich.affinoid_domain.UnionOfDomains(affinoid_list)
Bases: mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine

Return the union of a list of affinoid domains.

INPUT:

• affinoid_list - a nonempty list of affinoid domains

OUTPUT:

The union of the affinoid domains in affinoid_list

connected_component_tree(xi0)
Return the tree of the connected component of this affinoid with given root.

INPUT:

• xi0 – a point type II or V

OUTPUT:

If 𝜉0 is a point of type II, then we return an affinoid tree underlying the connected component of this
affinoid 𝑈 with minimal point 𝜉0.

2.4. Affinoid subdomains of the Berkovich line. 45

MCLF Documentation

It is assumed but not checked that 𝜉0 is a minimal point of a connected component of 𝑈 .

If 𝜉0 is of type V then we return the branch of this tree in the direction of 𝜉0. This has the effect of ‘filling
in all holes’ which do not lie in the open discoid 𝐷𝜉0 . It does not correspond to the intersection with 𝐷𝜉0 .

is_in(xi)
Return whether xi lies in this affinoid.

INPUT:

• xi – a point on the Berkovich line (type V points are allowed)

OUTPUT: True if 𝜉 lies on this affinoid.

minimal_points(xi0=None)
Return the minimal points of this affinoid greater than a given point.

INPUT:

• xi0 – a point of type II, or None (default None)

OUTPUT:

The list of all minimal points of this affinoid which are ≥ 𝜉0.

mclf.berkovich.affinoid_domain.all_polynomials(F, x, d)
List all polynomials in x over F of degree d.

INPUT:

• F: a finite field F

• x: generator of a polynomial ring over F

OUTPUT:

an iterator which list all elements of F[x] of degree d.

mclf.berkovich.affinoid_domain.rational_domain(X, f)
Return the rational domain defined by the function f.

INPUT:

• X – a Berkovich line

• f – a nonconstant rational function on 𝑋

OUTPUT:

The rational domain

𝑈 := {𝜉 ∈ 𝑋 | 𝑣𝜉(𝑓) ≥ 0}.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: rational_domain(X, (x^2+2)/x*(x+1)/2)
Affinoid with 2 components:
Elementary affinoid defined by
v(x^2 + 2) >= 3/2
Elementary affinoid defined by
v(x + 1) >= 1
<BLANKLINE>

46 Chapter 2. The Berkovich line

MCLF Documentation

f may be nonconstant:

sage: rational_domain(X, F(1/2))
The empty set
sage: rational_domain(X, F(1))
the full berkovich line

mclf.berkovich.affinoid_domain.simplify_tree_at_vertex(T, T1)
Simplify the affinoid tree at a given vertex.

This is now obsolete.

INPUT:

• T – an affinoid tree

• T1 – a subtree of 𝑇

OUTPUT: the affinoid tree 𝑇 is simplified, starting at the subtree 𝑇1.

We check whether the root of 𝑇1 (which is a vertex of 𝑇) may be contracted, or whether 𝑇1 has a unique child
which may be omitted. In the first case, we try to iterate this, if possible.

This may not simplify 𝑇 as much as possible. However, if 𝑇 has been obtained from a simplified

mclf.berkovich.affinoid_domain.union_of_affinoid_trees(T1, T2)
Return the tree representing the union of the affinoids with given trees.

This is now obsolete.

INPUT:

• T1, T2 – affinoid trees

OUTPUT: the tree representing the union of the affinoids represented by 𝑇1 and 𝑇2.

2.5 Piecewise affine functions on the Berkovich projective line.

Let 𝐾 be a field, 𝑣𝐾 a discrete valuation on 𝐾 and 𝑋 = P1
𝐾 the Berkovich line over 𝐾.

A continuous function

ℎ : 𝑋 → R ∪ {±∞}

is called piecewise affine if it factors over the retraction map

𝑟𝑇 : 𝑋 → 𝑇

onto a Berkovich subtree 𝑇 ⊂ 𝑋 , and the restriction of ℎ to the edges of 𝑇 are affine (with respect to the natural affine
structure of a path on a Berkovich line).

The most important examples of piecewise linear functions are valuative functions. For instance, to any nonzero
rational function 𝑓 ∈ 𝐹 = 𝐾(𝑥) we associate the function

ℎ𝑓 : 𝑋 → R ∪ {±∞}, 𝜉 ↦→ 𝑣𝜉(𝑓).

A general valuative function on 𝑋 is simply a rational multiple of a function of the form ℎ𝑓 . Any such function ℎ can
be written uniquely in the form

ℎ = 𝑎0 +
∑︁
𝑖

𝑎𝑖 · ℎ𝑓𝑖

2.5. Piecewise affine functions on the Berkovich projective line. 47

MCLF Documentation

where the 𝑓𝑖 are irreducible polynomials in the parameter 𝑥, and the 𝑎𝑖 are rational numbers, with 𝑎𝑖 ̸= 0 for 𝑖 > 0.

Let ℎ be a nonconstant piecewise affine function on 𝑋 . Then the subset

𝑈 := {𝜉 ∈ 𝑋 | ℎ(𝜉) ≥ 0}

is an affinoid subdomain (unless it is empty, or the full Berkovich line 𝑋). If ℎ = ℎ𝑓 is the valuative function
associated to a rational function 𝑓 , then 𝑈 is actually a rational domain.

AUTHORS:

• Stefan Wewers (2017-2019)

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))

We can define a valuative function by a rational function on 𝑋:

sage: f = (x^2+2*x-2)/(2*x-1)
sage: h = valuative_function(X, f)

We check that the value of ℎ is the valuation of 𝑓 , at several points:

sage: xi = X.gauss_point()
sage: h(xi), xi.v(f)
(0, 0)
sage: xi = X.infty()
sage: h(xi), xi.v(f)
(-Infinity, -Infinity)
sage: xi = X.point_from_discoid(x, 3)
sage: h(xi), xi.v(f)
(1, 1)

We can also define a valuative function by a pair (𝐿, 𝑎0):

sage: L = [(x - 1, 2/3), (x + 1, 3/2)]
sage: a_0 = -3
sage: h = valuative_function(X, (L, a_0))
sage: xi = X.point_from_discoid(x + 1, 2)
sage: h(xi)
2/3

We can compute the affinoid domain given by the inequality ℎ(𝜉) ≥ 0:

sage: h.affinoid_domain()
Affinoid with 2 components:
Elementary affinoid defined by
v(x - 1) >= 9/4
Elementary affinoid defined by
v(x + 1) >= 14/9

class mclf.berkovich.piecewise_affine_functions.AffineFunction(gamma, a, b)
Bases: SageObject

An affine function on a closed annuloid or a closed discoid.

INPUT:

48 Chapter 2. The Berkovich line

MCLF Documentation

• xi1, xi2 – points on the Berkovich line 𝑋 such that 𝜉1 <= 𝜉2

• a, b – rational numbers

OUTPUT:

the affine function ℎ on the domain 𝐷 of the path 𝛾 = [𝜉1, 𝜉] defined by 𝑎 and 𝑏. If 𝑡 : 𝐷 → R is the standard
parametrization, then

ℎ(𝜉) := 𝑎 · 𝑟𝛾(𝜉) + 𝑏.

berkovich_line()
Return the Berkovich line underlying this affine function.

domain()
Return the domain of definition of this affine function.

initial_point()
Return the initial point of the path underlying this affine function.

initial_value()
Return the initial value of this affine function.

is_constant()
Return whether this affine function is constant.

is_in_domain(xi)
Return whether a point is in the domain of definition of this affine function.

is_increasing()
Return whether this affine function is strictly increasing.

path()
Return the path underlying this affine function.

terminal_point()
Return the terminal point of the path underlying this affine function.

terminal_value()
Return the terminal value of this affine function.

class mclf.berkovich.piecewise_affine_functions.DirectedPath(xi1, xi2)
Bases: SageObject

A directed path on the Berkovic path.

INPUT:

• xi1, xi2 – two points on the Berkovich line such that 𝜉1 ≤ 𝜉2

OUTPUT:

the directed path 𝛾 = [𝜉1, 𝜉2].

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))

We can define a path by specifying the initial and the terminal point:

2.5. Piecewise affine functions on the Berkovich projective line. 49

MCLF Documentation

sage: xi1 = X.point_from_discoid(x, 1)
sage: xi2 = X.point_from_discoid(x^2 + 4, 5)
sage: gamma = DirectedPath(xi1, xi2)
sage: gamma
path from Point of type II on Berkovich line, corresponding to v(x) >= 1 to Point
→˓of type II on Berkovich line, corresponding to v(x^2 + 4) >= 5

We use the standard parametrization for a path; it depends on the discoid representation of the terminal point:

sage: gamma.point(3)
Point of type II on Berkovich line, corresponding to v(x + 2) >= 3/2

Given a path 𝛾 = [𝜉1, 𝜉2], we define its tube 𝐷 as follows. If 𝜉2 is of type II, then 𝐷 is the open annuloid with
boundary point points 𝜉1 and 𝜉2. If 𝜉1 is of type I, then 𝐷 := 𝐷𝜉1 is the discoid with boundary point 𝜉1.:

sage: gamma.tube()
domain defined by
v(x + 2) > 1
v(1/(x^2 + 4)) > -5

sage: gamma.is_in_tube(X.gauss_point())
False

sage: gamma.is_in_tube(xi2)
False

berkovich_line()
Return the Berkovich line on which this path lives.

initial_parameter()
Return the initial parameter of this path.

OUTPUT:

a rational number 𝑠0 such that 𝛾(𝑠0) is the initial point of this path 𝛾.

initial_point()
Return the initial point of this path.

initial_slope()
Return the slope of this path at the initial point.

is_limit_path()
Return whether the terminal point of this path is a limit point.

terminal_parameter()
Return the terminal parameter of this path.

OUTPUT:

a rational number 𝑠1 (or ∞)‘ such that 𝛾(𝑠1) is the terminal point of this path 𝛾.

terminal_point()
Return the terminal point of this path.

tube()
Return the tube around this path.

Let 𝜉1 be the initial and 𝜉2 be the terminal point of this path. Then the tube is either the open annuloid
with boundary points 𝜉1 and 𝜉2 (if 𝜉2 is of type II) or the closed discoid with boundary point 𝑥𝑖1 (if 𝜉2 is
of type I).

50 Chapter 2. The Berkovich line

MCLF Documentation

class mclf.berkovich.piecewise_affine_functions.Discoid(xi0, xi1=None)
Bases: mclf.berkovich.piecewise_affine_functions.Domain

Return a closed discoid of the Berkovich line.

INPUT:

• xi0 - a point on the Berkovich line 𝑋

• xi1 (default: None) – another point on 𝑋

OUTPUT:

the closed discoid 𝐷 consisting of all point on the Berkovich line which are greater or equal to 𝜉0. If 𝜉1 is given,
then it is checked whether 𝜉1 lies in 𝐷.

If 𝜉0 is the Gauss point, then 𝐷 is taken to be the closed discoid with minimal point 𝜉0, containing 𝜉1. If 𝜉1 is
not given, then 𝐷 is taken to be the closed unit disk.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: Discoid(X.gauss_point())
the closed discoid defined by v(x) >= 0

minimal_point()
Return the minimal point of this closed discoid.

class mclf.berkovich.piecewise_affine_functions.Domain(X, inequalities,
strict_inequalities)

Bases: SageObject

A domain in the Berkovich line, defined by inequalities.

Objects of this class are used as domians of definition of affine and piecewise affine functions. Although they
may be affinoid domains, this class has no relation to the class AffinoidDomainOnBerkovichLine.

INPUT:

• X – a Berkovich line

• inequalities – a list of pairs (𝑓, 𝑎)

• strict_inequalities – a list of pairs (𝑔, 𝑏)

OUTPUT: the domain of 𝑋 which is the intersection of the domains defined by the inequalities

𝑣(𝑓) ≤ 𝑎, 𝑣(𝑔) < 𝑏.

Here 𝑓, 𝑔 are assumed to be nonconstant rational functions on 𝑋 , and 𝑎, 𝑏 rational numbers.

If the inequalities and strict_inequalities are both empty then the full Berkovich line is returned.

berkovich_line()
Return the Berkovich line underlying this domain.

contains_infty()
Return whether this domain contains the point at infinity.

inequalities()
Return the list of non-strict inequalities which are part of the definition of this domain.

2.5. Piecewise affine functions on the Berkovich projective line. 51

MCLF Documentation

is_full_berkovich_line()
Return whether this domain is the full Berkovich line.

minimal_point()
Return the minimal point of this domain.

Since an arbitrary domain has no minimal point, this method raises an error, unless this domain is the full
Berkovich line.

strict_inequalities()
Return the list of strict inequalities which are part of the definition of this domain.

class mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction(D,
a0,
re-
stric-
tions)

Bases: SageObject

A piecewise affine function on a domain in the Berkovich line.

INPUT:

• D – a domain in the Berkovich line

• a0 – a rational number

• restrictions – a list of pairs (ℎ1, ℎ2)

OUTPUT:

a piecewise affine function ℎ on 𝐷.

We assume that 𝐷 is either a closed discoid, or the full Berkovich line 𝑋 . Let 𝜉0 be the initial point of the
function, which is either the boundary point of 𝐷 or, if 𝐷 = 𝑋 , the Gauss point on 𝑋 .

The restrictions are the restrictions of ℎ to proper open subdiscoids 𝐷1 of 𝐷. It is assumed that ℎ is constant,
with value 𝑎0, on the complement of these subdiscoids. The restriction of ℎ to 𝐷1 is given by a pair (ℎ1, ℎ2),
where ℎ2 is the restriction of ℎ to a proper closed subdiscoid 𝐷2 ⊂ 𝐷1 and ℎ1 is the restriction of ℎ to the open
annuloid 𝐷1∖𝐷2. It is assumed that ℎ1 is an affine functions, whereas ℎ2 is piecewise affine.

We allow 𝐷2 to be empty, in which case ℎ2 is None and the domain of ℎ1 is an open discoid.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))

We can define the “valuative function” of a rational function:

sage: f = (x^2 - 2) / x
sage: h = valuative_function(X, f)
sage: h
piecewise affine function on the Berkovich line, with initial value 0

A piecewise affine function can be evaluated at any point.

sage: xi = X.point_from_discoid(x, 2)
sage: h(xi)
-1
sage: xi.v(f)
-1

52 Chapter 2. The Berkovich line

MCLF Documentation

A piecewise affine function defines an affininoid subdomain (the point where the function takes nonnegative
values).

sage: h.affinoid_domain() Elementary affinoid defined by v(x) >= 0 v(1/x) >= -1 <BLANKLINE>

affinoid_domain()
Return the affinoid domain defined by this function.

OUTPUT:

the affinoid subdomain of the domain of this function ℎ, defind by the inequality

ℎ(𝑥𝑖) ≥ 0.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: h1 = valuative_function(X, 2*x)
sage: h1.affinoid_domain()
Elementary affinoid defined by
v(x) >= -1
<BLANKLINE>
sage: h2 = valuative_function(X, x*(x-1)/2)
sage: h2.affinoid_domain()
Affinoid with 2 components:
Elementary affinoid defined by
v(x - 1) >= 1
Elementary affinoid defined by
v(x) >= 1

berkovich_line()
Return the Berkovich line on which this function is defined.

domain()
Return the domain of this function.

find_next_points_with_value(a, xi0=None)
Return the next point where this function takes a given value, after a given point.

INPUT:

• a – a rational number

• xi0 (default: None) – a point in the domain of this function

OUTPUT: The list of all points on the nerf of this function

• at which this function takes the value 𝑎,

• at which the function is not constant,

• which are strictly greater than 𝜉0, and

• which are minimal with this property.

If xi0 is None then the second condition is ignored.

NOTE:

2.5. Piecewise affine functions on the Berkovich projective line. 53

MCLF Documentation

In this form, the problem is not well defined. Note that the function
may be constant on pathes of the nerf. If this constant value is equal
to a, and xi0 lies on this path and ist not the terminal point, then
there is no minimal next point with value a.

find_next_zeroes(xi0=None)
Return the next zeroes of this function after a given point.

INPUT:

• xi0 (default: None) – a point in the domain of this function

OUTPUT: The list of all points in the domain of this function which

• are zeroes of this function,

• are not in the constant locus of the function

• are greater or equal to 𝜉0, and

• are minimal with this property.

If xi0 is None then the third condition is ignored.

initial_point()
Return the initial point of this function.

This is the minimal point of the domain of this function.

initial_value()
Return the value of this function at the initial point.

is_constant()
Return whether this function is constant.

is_in_domain(xi)
Return whether a given point is in the domain of this function.

restrictions()
Return the restrictions of this piecewise affine functions.

OUTPUT:

a list of pairs (ℎ1, ℎ2), where ℎ1 is an affine function which is the restriction of this function ℎ to an open
subannuloid of the domain of ℎ, and ℎ2 is the restriction of ℎ to the closed discoid which the unique hole
of the domain of ℎ1.

If the domain of ℎ1 is an open discoid (so there is no hole), then ℎ2 is None.

Together with the initial value, these restrictions define ℎ, because ℎ is constant on the complement of the
domains of definitios of these restrictions.

mclf.berkovich.piecewise_affine_functions.open_annuloid(xi0, xi1)
Return an open annuloid.

INPUT:

• xi0, xi1 – points of type II on the Berkovich line 𝑋

OUTPUT:

the open annuloid 𝐴 with boundary points 𝑥𝑖0 and 𝜉1. Note that 𝜉0 and 𝜉1 are not contained in 𝐷.

It is assumed that 𝜉0 < 𝜉1. This means that 𝐴 cannot contain the Gauss point.

EXAMPLES:

54 Chapter 2. The Berkovich line

MCLF Documentation

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: xi0 = X.point_from_discoid(x-1, 1)
sage: xi1 = X.point_from_discoid(x+1, 2)
sage: open_annuloid(xi0, xi1)
domain defined by
v(x + 1) > 1
v(1/(x + 1)) > -2

mclf.berkovich.piecewise_affine_functions.open_discoid(xi0, xi1)
Return an open discoid.

INPUT:

• xi0, xi1 – points on the Berkovich line 𝑋

OUTPUT:

the open discoid 𝐷 with boundary point 𝑥𝑖0 which contains 𝜉1. Note that 𝜉0 is not contained in 𝐷.

It is assumed that 𝜉0 < 𝜉1. This means that 𝐷 cannot contain the Gauss point.

EXAMPLES:

sage: from mclf import *
sage: F.<x> = FunctionField(QQ)
sage: X = BerkovichLine(F, QQ.valuation(2))
sage: xi0 = X.point_from_discoid(x-1, 1)
sage: xi1 = X.point_from_discoid(x+1, 2)
sage: open_discoid(xi0, xi1)
domain defined by
v(x + 1) > 1

mclf.berkovich.piecewise_affine_functions.valuative_function(D, f, T=None,
is_factored=False)

A valuative function on a domain in the Berkovich line.

INPUT:

• D – a domain in the Berkovich line, or the Berkovich line itself

• f – a nonconstant rational function on 𝑋 , or a pair (𝐿, 𝑎0), where 𝐿 is a list of pairs (𝑔, 𝑎) consisting
of

– a polynomial 𝑔 (element of the function field on 𝑋)

– a nonzero rational number 𝑎

and where 𝑎0 is a rational number

• T (default: None) – a Berkovich tree

• is_factored – a boolean (default: False)

OUTPUT:

If 𝑓 is a rational function, then we create the valuative function ℎ on 𝐷 defined as

ℎ(𝜉) := 𝑣𝐾(𝑓(𝜉))

2.5. Piecewise affine functions on the Berkovich projective line. 55

MCLF Documentation

If f is a pair (𝐿, 𝑎0) as above, where 𝐿 is a list of pairs (𝑓𝑖, 𝑎𝑖), then the corresponding valuative function is
defined as

ℎ(𝜉) := 𝑎0 +
∑︁
𝑖

𝑎𝑖𝑣(𝑓(𝜉)).

The domain 𝐷 must be either a standard closed discoid, or the the full Berkovich line.

If the Berkovich tree 𝑇 is given, then it is assumed that 𝑇 is the dendrite of the function ℎ on 𝐷. This means
that the root of 𝑇 is the minimal point of 𝐷, and that the restriction of ℎ to the edges of 𝑇 are affine.

If is_factored is True then we assume that 𝐿 is actually a list of triples (𝑓, 𝑎, [𝜉]), where the 𝑓 are irre-
ducible polynomials, and [𝜉] is the list of all points of type I which are zeroes of 𝑓 .

56 Chapter 2. The Berkovich line

CHAPTER 3

p-adic extensions

3.1 Fake p-adic completions

p-adic fields as completions of absolute number fields

This module realizes a class FakepAdicCompletion which represents a 𝑝-adic number field 𝐾. Internally, the
𝑝-adic number field is represented by a number field 𝐾0 together with a discrete valuation 𝑣𝐾 on 𝐾0 which extends
the 𝑝-adic valuation 𝑣𝑝 on Q, such that 𝐾 is the completion of 𝐾0 at 𝑣𝐾 .

Our main goal is to be able to compute weak 𝑝-adic Galois extensions of 𝑝-adic number fields of large degree. We
want to:

• compute efficiently with general extensions of Q𝑝 of high ramification index (up to several hundreds)

• obtain provably correct results.

Both objectives seem difficult to reach with the existing functionality of Sage. Therefore, we decided to represent a
𝑝-adic number field 𝐾 by a pair (𝐾0, 𝑣𝐾), where 𝐾0 is an absolute number field and 𝑣𝐾 is a discrete valuation on 𝐾0

extending the‘p‘-adic valuation 𝑣𝑝 on Q, for some prime 𝑝. A more systematic realization of this idea, Julian Rueth’s
Sage package completion, should soon be part of Sage.

The first advantage of our approach (which adresses the first point above) is that arithmetic in absolute number fields
is reasonably fast in Sage. Moreover, since there are many pairs (𝐾0, 𝑣𝐾) which have the same completion, we can
choose 𝐾0 in such a way that certain operations we use heavily (like evaluation of 𝑣𝐾) can be done very efficiently.
At the moment, we choose (𝐾0, 𝑣𝐾) such that

• 𝑣𝐾 is the unique extension of 𝑣𝑝 to 𝐾0,

• 𝐾0/Q is generated by a uniformizer 𝜋𝐾 of 𝑣𝐾 .

For instance, these assumptions allow us to easily write down a 𝑝-integral basis for 𝐾0/Q which is also an integral
basis for 𝐾/Q𝑝. We can also choose 𝐾0 such that the defining polynomial has small coefficients.

The second advantage is that, since for most of our needs we do not really need the 𝑝-adic number field 𝐾 explicitly,
we can instead work with the henselization 𝐾ℎ of (𝐾0, 𝑣𝐾) which is an exact field: an element of 𝐾ℎ is uniquely
determined by a finite amount of data, namely its minimal polynomial over Q and a sufficiently precise approximation

57

MCLF Documentation

by an element of 𝐾0. Moreover, 𝐾ℎ only depends on the 𝑝-adic number field 𝐾 but not on our particular choice of
𝐾0.

The main drawback of our approach is that morphisms between two 𝑝-adic number fields 𝐾 and 𝐿 are somewhat
difficult to realize: the problem is that for our particular choice of the underlying number fields 𝐾0 and 𝐿0, there may
not exist a nonzero morphism 𝐾0 → 𝐿0 even if 𝐾 is a subfield of 𝐿.

AUTHORS:

• Stefan Wewers (2017-08-24): initial version

EXAMPLES:

TO DO:

• one should try to always find a totally ramified extension (but it is not so clear how to do that)

class mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion(K0,
vK)

Bases: SageObject

Return the completion of a number field at a 𝑝-adic valuation.

INPUT:

• K0 – an absolute number field,

• vK – a 𝑝-adic valuation on K0.

We assume that 𝑣𝐾 is the unique extension of the 𝑝-adic extension 𝑣𝑝 on Q to𝐾0, and that the standard generator
𝜋𝐾 of 𝐾0/Q is a uniformizer for 𝑣𝐾 . If this is not the case, an error is raised.

absolute_degree()
Return the degree of this p-adic field as an extension of Q𝑝.

absolute_inertia_degree()
Return the absolute inertia degree of this p-adic extension.

absolute_ramification_degree()
Return the absolute ramification degree of this p-adic extension.

approximate_factorization(f, only_ramified_factors=False)
Return a list of approximate irreducible factors of f.

INPUT:

• f – a squarefree univariate polynomial over 𝐾0, the number field underlying this p-adic field 𝐾

• only_ramified_factors – boolean (default: False)

OUTPUT: a list of pairs (𝑔, 𝑒), where 𝑔 is an approximate irreducible factor of 𝑓 over 𝐾 and 𝑒 >= 1. The
pairs (𝑔, 𝑒) are in bijection with the irreducible factors of 𝑓 over 𝐾. If (𝑔, 𝑒) corresponds to the irreducible
factor 𝑓 ′𝑖𝑡ℎ𝑒𝑛 and 𝑓𝑖 generate the same extension of 𝐾. In particular, 𝑓𝑖 and 𝑔 have the same degree.
Moreover 𝑒 is the ramification degree of the extension of 𝐾 generated by 𝑔 (or 𝑓𝑖).

If only_ramified_factors is True then all pairs (𝑔, 𝑒) with 𝑒 = 1 are omitted.

At the moment we have to assume that 𝑓 is monic and integral with respect to 𝑣𝐾 (and hence all roots have
nonnegative valuation).

approximate_irreducible_factor(f)
Return one approximate irreducible factor of a given polynomial.

INPUT:

• f – a squarefree and integral polynomial over the number field K_0 underlying this 𝑝-adic number
field 𝐾.

58 Chapter 3. p-adic extensions

MCLF Documentation

Output:

Either a monic poynomial 𝑔 over 𝐾0 which is an approximate irreducible factor of 𝑓 , or a positive integer
𝑒.

The polynomial 𝑔 is then irreducible over 𝐾 and the extension of 𝐾 generated by adjoining a root of 𝑔 is
contained in the splitting field of 𝑓 .

If an integer 𝑒 is retuned, then any tame extension of 𝐾 of ramification degree 𝑒 is a weak splitting field of
𝑓 over 𝐾.

TODO:

One should also allow a list of polynomials as input.

base_change_matrix(integral_basis=’standard’, precision=20)
Return the base change matrix to an integral basis.

INPUT:

• integral_basis – a string (default: “standard”)

• precision – a positive integer

OUTPUT:

An invertible (𝑛, 𝑛)-matrix 𝑆 over Q with the following property: for an element 𝑎 of 𝐾0, the vector
S*a.vector() gives the representation of 𝑎 as a linear combination of integral_basis.

TODO:

• clarify the role of precision in this function

base_valuation()
Return the 𝑝-adic valuation.

characteristic_polynomial(f, g)
Return the characteristic polynomial of an element of a simple extension of 𝐾.

INPUT:

• f, g – univariate monic polynomials over 𝐾

OUTPUT:

the characteristic polynomial of the element 𝛽 = 𝑔(𝛼) with respect to the relative extension 𝐿 = 𝐾[𝛼]/𝐾,
where 𝛼 is a formal root of 𝑓 . Of course, 𝐿 is a field only if 𝑓 i irreducible, but this is not checked, and no
error would occur within this function if 𝑓 is reducible.

characteristic_polynomial_mod(f, N)
Return the absolute characteristic polynomial of the root of a given polynomial, modulo 𝑝𝑁 .

INPUT:

• f – a monic 𝑝-integral and irreducible polynomial over the underlying number field 𝐾

• N – a positive integer

OUTPUT:

the absolute characteristic polynomial of a root of 𝑓 , modulo 𝑝𝑁 .

degree()
Return the degree of this p-adic field as an extension of Q𝑝.

3.1. Fake p-adic completions 59

MCLF Documentation

element_from_vector(v, integral_basis=’standard’)
Return the element corresponding to a given vector.

INPUT:

• v – a vector of rational numbers with length equal to the degree of 𝐾

• integral_basis – a string (default: “standard”)

OUTPUT:

the linear combination of the canonical integral basis of 𝐾 corresponding to 𝑣.

extension(f, embedding=False)
Return a 𝑝-adic extension such that f has a root in an unramified extension of it.

INPUT:

• f – a monic univariate polynomial over the number field 𝐾0 underlying this p-adic extension 𝐾,
which is irreducible over 𝐾.

• embedding – a boolean (default: False)

OUTPUT:

A 𝑝-adic extension 𝐿 of 𝐾 such that f has a root in an unramified extension of 𝐿, or (if embedding is
True) the pair (𝐿, 𝜑), where 𝜑 is the canonical embedding of 𝐾 into 𝐿.

If 𝐾0 is the underlying number field, then 𝑓 ∈ 𝐾0[𝑥] is irreducible over the completion 𝐾; the resulting
finite extension 𝐿/𝐾 is a subextension of the extension of 𝐾

𝐾[𝑥]/(𝑓).

However, the number field 𝐿0 underlying 𝐿 is in general not equal to 𝐾0[𝑥]/(𝑓), and there may not exist
any embedding of 𝐾0 into 𝐿0.

generator()
Return the standard generator of this p-adic extension.

inertia_degree()
Return the absolute inertia degree of this p-adic extension.

integral_basis_of_unramified_subfield(precision=5)
Return an (approximate) integral basis of the maximal unramified subfield.

INPUT:

• precison – a positive integer

OUTPUT:

A list 𝛼 = (𝛼0, . . . , 𝛼𝑚−1) of elements of 𝐾0 which approximate (with precision 𝑝𝑁 an integral basis of
the maximal unramified subfield.

is_Qp()
Return True if this is the padic-completion of the field of rational numbers.

is_approximate_irreducible_factor(g, f, v=None)
Check whether g is an approximate irreducible factor of f.

INPUT:

• g: univariate polynomial over the underlying number field 𝐾0

• f: univariate polynomial over 𝐾0

60 Chapter 3. p-adic extensions

MCLF Documentation

• v: a MacLane valuation on 𝐾0[𝑥] approximating g, or None; here approximating means that
LimitValuation(v, g) is well-defined.

Output: True if g is an approximate irreducible factor of f, i.e. if g is irreducible over 𝐾 and Krasner’s
condition is satified, If true, the stem field of g over 𝐾 is a subfield of the splitting field of f over 𝐾.

Her we say that Krasner’s Condition holds if for some root 𝛼 of 𝑔 there exists a root 𝛽 of 𝑓 such that 𝛼 is
𝑝-adically closer to 𝛽 than to any other root of 𝑔.

Note that if deg(𝑔) = 1 then the condition is nontrivial, even though the conclusion from Krasner’s Lemma
is trivial.

matrix(a, integral_basis=’standard’)
Return the matrix representing the element a.

INPUT:

• a – an element of the underlying number field of this p-adic extension

• integral_basis – a string (default: “standard”)

OUTPUT:

The matrix representing the element 𝑎 of the underlying number field 𝐾, with respect to the canonical
𝑝-integral basis.

minpoly_over_unramified_subextension(N)
Return the minimal polynomial of the standard uniformizer of this 𝑝-adic number field 𝐾, relative to the
maximal unramified subfield, as a polynomial over 𝐾 itself.

INPUT:

• N – a positive integer

OUTPUT:

A polynomial 𝑃 over the number field 𝐾0 underlying 𝐾. 𝑃 is an approximation (with precision N) of the
minimal polynomial of the standard uniformizer 𝜋 of 𝐾, relative to the maximal unramified subfield 𝐾𝑛𝑟

of 𝐾. Moreover, 𝑃 (𝜋) = 0 holds exactly.

If the approximation is sufficient (note: this still has to be made precise) then 𝑃 has a root 𝜋1 in 𝐾 which
is also a uniformizer of 𝐾, and 𝐾 = 𝐾𝑛𝑟[𝜋1].

NOTE:

To check that 𝑃 is ok, it should suffice to see that 𝑃 is “Eisenstein over 𝐾𝑛𝑟” and has a root in 𝐾.
Unfortunately, the coefficient will likely not lie in 𝐾𝑛𝑟 exactly, and so this criterion probably makes no
sense.

normalized_valuation()
Return the normalized valuation on this p-adic field.

Here normalized means that the valuation takes the value 1 on a uniformizer.

number_field()
Return the number field representing this p-adic extension.

p()
Return the prime 𝑝.

polynomial()
Return the minimal polynomial of the standard generator of 𝐾.

ramification_degree()
Return the absolute ramification degree of this p-adic extension.

3.1. Fake p-adic completions 61

MCLF Documentation

ramified_extension(n, embedding=False)
Return a purely ramified extension with given ramification degree.

INPUT:

• n – a positive integer

• embedding – a boolean (default: False)

OUTPUT:

A finite extension 𝐿 of this p-adic field 𝐾 such that 𝐿/𝐾 is purely ramified, of degree n. If embedding
is True then the pair (𝐿, 𝜑) is returned, where 𝜑 : 𝐾 → 𝐿 is the canonical embedding.

reduce(a, N)
Return an approximation of a which is reduced modulo 𝑝𝑁 .

INPUT:

• a – an element of the underlying number field 𝐾

• N – a positive Integer

OUTPUT: an element �̃� of 𝐾 which is congruent to 𝑎 modulo 𝑝𝑁 , and whose representation in terms of
the canonical integral basis of 𝐾 has coefficents of the form 𝑐/𝑝𝑚, with 0 ≤ 𝑐 < 𝑝𝑁 and 𝑚 ≥ 0.

reduce_rational_number(a, N)
Return an approximation of a which is reduced modulo 𝑝𝑁 .

INPUT:

• a – a rational number

• N – a positive Integer

OUTPUT: an element �̃� of Q which is congruent to 𝑎 modulo 𝑝𝑁 , of the form 𝑐/𝑝𝑚, with 0 ≤ 𝑐 < 𝑝𝑁

and 𝑚 ≥ 0.

simplify_irreducible_polynomial(f)
Return a simpler polynomial generating the same extension.

INPUT:

• f – an univariate polynomial over the underlying number field 𝐾 which is integral and irreducible
over �̂�

OUTPUT:

A polynomial 𝑔 over 𝐾 which is irreducible over �̂�, and which generates the same extension of �̂� as 𝑓 .

subfield(alpha, e)
Return a subfield approximated by a given element.

INPUT:

• alpha – an element of the number field 𝐾0 underlying 𝐾

• e – a divisor of the absolute degree of 𝐾0

OUTPUT:

A 𝑝-adic number field 𝐿 with ramification index 𝑒 which has an embedding into 𝐾, or None if no such
field can be found.

If 𝐿 is a subfield of 𝐾 with ramification index 𝑒 and 𝛼𝑖 is a sequence of element of 𝐾0 converging to a
generator of 𝐿, then calling K.subfield(alpha_i,e) will find the subfield 𝐿 for 𝑖 sufficiently large.

TODO:

62 Chapter 3. p-adic extensions

MCLF Documentation

One easy improvement could be to not try to embed L into K after every MacLane step, but only for the
last step before the degree of v jumps.

uniformizer()
Return the standard unifomizer of this p-adic extension.

valuation()
Return the valuation on the underlying number field of this p-adic extension.

vector(a, integral_basis=’standard’)
Return the vector corresponding to an element of the underlying number field.

INPUT:

• a – an element of the number field 𝐾0 underlying this 𝑝-adic number field

• integral_basis – a string (default: “standard”)

OUTPUT:

the vector of coefficients corresponding to the representation of 𝑎 as a linear combination of an integral
basis of 𝐾.

If integral_basis is “standard” then we use the integral basis

𝑝⌈𝑖/𝑒⌉𝜋𝑖, 𝑖 = 0, . . . , 𝑛,

where 𝜋 is the standard uniformizer of 𝐿, 𝑒 is the absolute ramification degree and 𝑛 the absolute degree
of 𝐾.

If it is mixed then we use the integral basis

𝜋𝑖𝛼𝑗 , 𝑖 = 0, . . . , 𝑒− 1, 𝑗 = 0, . . . , 𝑛/𝑒− 1,

where 𝛼𝑗 is an approximation of an integral basis of the maximal unramified subfield.

weak_splitting_field(F)
Return the weak splitting field of a list of polynomials.

INPUT:

• F – a polynomial over the underlying number field 𝐾0, or a list of polynomials

OUTPUT:

A weak splitting field 𝐿/𝐾 of F.

This means that 𝐹 splits over an unramified extension of 𝐿.

Note:

This function works at the moment only for the base field Q𝑝.

TODO:

The following trick should give a massive improvement for large examples: Instead of
calling K.approximate_factorization(F) one should calling a new version of K.
approximate_irreducible_factor(F, *options*).

The function approximate_irreducible_factor(..)would do a MacLane approximation with
require_maximal_degree=True. From the resulting v’s one can then select (according to the
options) one which, after enough MacLane steps, gives an approximate irreducible factor.

The point is that the test for being an approximate factor seems to be the most time consuming for large
examples. A further speedup could be obtained by

3.1. Fake p-adic completions 63

MCLF Documentation

• either finding a more clever way to test,

• or by simply doing several MacLane steps before testing.

The options should be set such that factors are chosen accoring to the following rules:

1. one prefers purely ramified factors over factors with inertia

2. one prefers purely wild factors over mixed factors

3. one prefers mixed factors over tame factors

Note that for tame factors the inertia may be ignored, hence they may be considered as purely ramified.
However, it is better to leave them until the end, because doing a tame extension is almost trivial. It is not
clear to me whether a purely wild factor with inertia is better than a mixed unramified factor.

EXAMPLES:

The following example created an error in a previous version

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: Q2 = FakepAdicCompletion(QQ, v_2)
sage: R.<x> = QQ[]
sage: f = x^12 + 192*x^9 - 5352*x^6 + 33344*x^3 - 293568
sage: L = Q2.weak_splitting_field(f)
sage: L.ramification_degree()
4

Check that non-integral polynomials are allowed as well

sage: Q2.weak_splitting_field(2*x^2 + 1)
2-adic completion of Number Field in pi2 with defining polynomial x^2 + 2

3.2 Fake 𝑝-adic embeddings

Let 𝐾 and 𝐿 be 𝑝-adic number fields. In this module we define a class FakepAdicEmbedding whose objects
represent embeddings 𝜑 : 𝐾 → 𝐿 over Q𝑝.

Here the 𝑝-adic number fields 𝐾 and 𝐿 are objects of the class FakepAdicCompletion. This means that 𝐾 and
𝐿 represented as pairs (𝐾0, 𝑣𝐾) and (𝐿0, 𝑣𝐿), where e.g. 𝐾0 is a number field and 𝑣𝐾 a 𝑝-adic valuation on 𝐾0 such
that 𝐾 is the completion of 𝐾0 at 𝑣𝐾 . In fact, we do not work with actual 𝑝-adic numbers.

Given an embedding 𝜑 : 𝐾 → 𝐿, there need not exist any embedding 𝐾0 → 𝐿0 of the underlying number fields.
Therefore, the embedding 𝜑 has to be construced in a rather indirect way. Recall that 𝐾0 and 𝐿0 are absolute number
fields generated by prime elements 𝜋𝐾 and 𝜋𝐿 over Q (with respect to 𝑣𝐾 and 𝑣𝐿). So an embedding 𝜑 : 𝐾 → 𝐿
is uniquely determined by a root of the absolute minimal polynomial 𝑃𝐾 of 𝜋𝐾 over Q in 𝐿. Such a root may be
represented by a limit pseudo valuation 𝑣 on the polynomial ring 𝐿0[𝑥] with 𝑣(𝑃𝐾) = ∞.

AUTHORS:

• Stefan Wewers (2017-08-30): initial version

EXAMPLES:

TO DO:

64 Chapter 3. p-adic extensions

MCLF Documentation

class mclf.padic_extensions.fake_padic_embeddings.FakepAdicEmbedding(K, L,
ap-
prox-
ima-
tion=None)

Bases: SageObject

Return an embedding of two 𝑝-adic number fields.

INPUT:

• K, L – two 𝑝-adic number fields, given as objects of FakepAdicCompletion

• approximation - an approximation of the desired emdding, or None (default: None)

OUTPUT: an embedding of 𝐾 into 𝐿 which is approximated by approximation, or None if no such em-
bedding exists.

WARNING: to return None doesn’t make sense, because __init__ returns an instance of
FakepAdicEmbedding.

Internally, the embedding 𝜑 is represented by a limit pseudo valuation 𝑣 on 𝐿0[𝑥] such that 𝑣(𝑃𝐾) = ∞. Here
𝐾0 and 𝐿0 are the algebraic number fields underlying𝐾 and 𝐿 and 𝑃𝐾 is the minimal valuation of the canonical
generator of 𝐾0 over Q.

An approximation of 𝜑 is any discrete valuation 𝑣0 on 𝐿0[𝑥] which approximates 𝑣. This may actually be 𝑣
itself.

Note that the resulting embedding may not be unique, in which case an arbitrary embedding is chosen.

eval(alpha, precision=2)
Evaluate this embedding on an element of this domain, or on a polynomial.

INPUT:

• alpha – an element of the domain of this embedding, or a polynomial over the underlying number
field of the domain

• precision – a positive integer, or None (default: None)

OUTPUT:

the image of alpha under this embedding 𝜑 : 𝐾 → 𝐿, with the guaranteed precision precision.

The element 𝛼 of 𝐾 may be given as an element of the number field 𝐾0 underlying 𝐾. In this case the
image 𝜑(𝛼) will be given as an element of the number field 𝐿0 underlying 𝐿, which is an approximation
of the true value of 𝜑(𝛼) modulo 𝑝𝑁 , where 𝑁 is the guaranteed precision. If precision is given then
𝑁 is larger or equal to precision. Otherwise the internal precision of 𝜑 is used (which only guarantees
that 𝜑 is uniquely determined).

The element 𝛼 in 𝐾 may also be given by a . . .

improve_approximation(N=None)
Improve the underlying approximation of this embedding.

INPUT:

• N – a positive integer, or None (default: None)

The effect of this method is that the underlying approximation of the limit valuation representing this
embedding is improved. If N is given then this improvement will guarantee that for any integral element 𝛼
of the number field 𝐾0 underlying the domain 𝐾 of this embedding, the value of self.eval(alpha)
will agree with the true value 𝜑(𝛼) modulo 𝑝𝑁 .

3.2. Fake 𝑝-adic embeddings 65

MCLF Documentation

3.3 Fake 𝑝-adic extensions

Let 𝐾 be a 𝑝-adic number field. For our project we need to be able to compute with Galois extensions 𝐿/𝐾 of large
degree.

At the moment, computations with general extensions of 𝑝-adic fields of large degree are still problematic. In par-
ticular, it seems difficult to obtain results which are provably correct. For this reason we do not work which 𝑝-adic
numbers at all. Instead, we use our own class FakepAdicCompletion, in which a 𝑝-adic number field is approxi-
mated by a pair (𝐾0, 𝑣𝐾), where 𝐾0 is a suitable number field and 𝑣𝐾 is a 𝑝-adic valuation on 𝐾0 such that 𝐾 is the
completion of 𝐾0 at 𝑣𝐾 .

In this module we define a class FakepAdicExtension, which realizes a finite extension 𝐿/𝐾 of 𝑝-adic number
fields. Both fields 𝐾 and 𝐿 are realized as objects in the class FakepAdicCompletion, the embedding 𝐾 → 𝐿 as
an object of FakepAdicEmbedding.

AUTHORS:

• Stefan Wewers (2017-08-30): initial version

EXAMPLES:

TO DO:

• the method polynomial should give an exact result, namely a object of some class
FakepAdicPolynomial

class mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension(phi)
Bases: SageObject

Return the extension of 𝑝-adic number fields corresponding to an embedding.

INPUT:

• phi – an embedding of 𝑝-adic number fields

OUTPUT: the extension 𝐿/𝐾 where 𝐾 is the domain and 𝐿 the target of 𝑝ℎ𝑖

base_field()
Return the base field.

degree()
Return the degree of the extension.

extension_field()
Return the extension field.

inertia_degree()
Return the inertia degree of the extension.

normalized_valuation()
Return the normalized valuation.

p()
Return the prime 𝑝.

polynomial()
Return the minimal polynomial of a generator of this extension.

OUTPUT:

A monic, integral and irreducible polynomial 𝑃 over the number field underlying the base field of this
extension.

66 Chapter 3. p-adic extensions

MCLF Documentation

Let 𝐿/𝐾 be our extension of 𝑝-adic number fields. Then 𝑃 is a monic polynomial over the number field
𝐾0 underlying 𝐾, of degree [𝐿 : 𝐾], with the following properties:

• 𝑃 is integral and irreducible over 𝐾

• 𝑃 is the minimal polynomial of a prime element 𝜋 of 𝐿 such that 𝐿 = 𝐾[𝜋].

Note, however, that 𝜋 is in general not equal to the canonical absolute generator 𝜋𝐿 of 𝐿/Q𝑝. Moreover,
in general no root of 𝑃 is contained in the number field 𝐿0 underlying 𝐿.

TODO:

𝑃 should be naturally equipped with

ramification_degree()
Return the ramification degree of the extension.

subextension(alpha, d)
Return a subextension of given degree, containing (approximately) a given element.

INPUT:

• alpha – an (approximate) element of this extension field

• d – a positive integer

OUTPUT:

a subextension of degree 𝑑 which (approximately) contains alpha, or None if no such subextension
exists.

Let 𝐿/𝐾 be the given extension of 𝑝-adic number fields. Then we are looking for a subextension 𝐾 ⊂
𝑀 ⊂ 𝐿 such that [𝑀 : 𝐾] = 𝑑. If 𝛼 is given exactly, then we demand that 𝛼 ∈ 𝑀 . If 𝛼 is given by an
approximation (𝛼0, 𝑁) then we demand that there exists an element 𝛼1 ∈𝑀 such that

𝑣𝑀 (𝛼1 − 𝛼0) ≥ 𝑁 ‘.

Here the valuation 𝑣𝑀 is normalized such that 𝑣𝑀 (𝑝) = 1.

valuation()
Return the valuation of the extension.

3.4 Weak p-adic Galois extensions

Let 𝐾 be a 𝑝-adic number field. For our project we need to be able to compute with Galois extensions 𝐿/𝐾 of large
ramification degree. For instance, we need to be able to compute the breaks of the ramification filtration of the Galois
group of 𝐿/𝐾, as well as the corresponding subfields.

At the moment, computations with large Galois extensions of 𝑝-adic fields are still problematic. In particular, it seems
difficult to obtain results which are provably correct. For this reason we do not work which 𝑝-adic numbers at all.
Instead, we use our own class FakepAdicCompletion, in which a 𝑝-adic number field is approximated by a pair
(𝐾0, 𝑣𝐾), where 𝐾0 is a suitable number field and 𝑣𝐾 is a 𝑝-adic valuation on 𝐾0 such that 𝐾 is the completion of
𝐾0 at 𝑣𝐾 .

Let 𝐿/𝐾 be a finite field extension. We say that 𝐿/𝐾 is a weak Galois extension if the induced extension 𝐿𝑛𝑟/𝐾𝑛𝑟

is Galois. Given a polynomial 𝑓 in 𝐾[𝑥], we say that 𝐿/𝐾 is a weak splitting field for 𝑓 if 𝑓 splits over 𝐿𝑛𝑟.

Given a weak Galois extension 𝐿/𝐾, we have canonical isomorphisms between the following groups:

• the Galois group of 𝐿𝑛𝑟/𝐾𝑛𝑟,

• the inertia subgroup of the Galois closure of 𝐿/𝐾,

3.4. Weak p-adic Galois extensions 67

MCLF Documentation

Moreover, this isomorphism respects the filtrations by higher ramification groups.

If 𝐿/𝐾 is totally ramified then the degree of 𝐿/𝐾 is equal to the degree of 𝐿𝑛𝑟/𝐾𝑛𝑟, which is equal to the order of
the inertia subgroup of the Galois closure of 𝐿/𝐾. Therefore, our approach allows us to fully understand the inertia
group of a Galois extension of 𝑝-adic fields, while keeping the degree of the field extensions with which one works as
small as possible.

Our method can also be used to work with approximations of the subfields of a 𝑝-adic Galois extension corresponding
to the higher ramification subgroups.

For 𝑢 ≥ 0 we let 𝐿𝑠ℎ,𝑢 denote the subfield of 𝐿𝑠ℎ/𝐾𝑠ℎ corresponding to the 𝑢 th filtration step of the Galois group
of 𝐿𝑠ℎ/𝐾𝑠ℎ. Then the completion of 𝐿𝑠ℎ,𝑢 agrees with the maximal unramified extension of the subextension �̂�𝑢 of
the Galois closure �̂�/�̂� corresponding to the 𝑢 th ramification step. Moreover, there exists a finite extensions 𝐿𝑢/𝐾,
together with an extension 𝑣𝐿𝑢 of 𝑣𝐾 to 𝐿𝑢 such that

• the strict henselization of (𝐿𝑢, 𝑣𝐿𝑢) is isomorphic to 𝐿𝑠ℎ,𝑢,

• the completion of (𝐿𝑢, 𝑣𝐿𝑢) agrees with �̂�𝑢, up to a finite unramified extension.

Note that 𝐿𝑢 will in general not be a subfield of 𝐿 (and not even of the Galois closure of 𝐿/𝐾).

In this module we define a class WeakPadicGaloisExtension, which realizes an approximation of a 𝑝-adic
Galois extension, up to unramified extensions.

AUTHORS:

• Stefan Wewers (2017-08-06): initial version

EXAMPLES:

This example is from the “Database of Local Fields”:

sage: from mclf import *
sage: v_3 = QQ.valuation(3)
sage: Q_3 = FakepAdicCompletion(QQ, v_3)
sage: R.<x> = QQ[]
sage: f = x^6+6*x^4+6*x^3+18
sage: L = WeakPadicGaloisExtension(Q_3, f)
sage: L.upper_jumps()
[0, 1/2]

TO DO:

class mclf.padic_extensions.weak_padic_galois_extensions.WeakPadicGaloisExtension(K,
F,
min-
i-
mal_ramification=1)

Bases: mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension

Return the weak p-adic splitting field of a polynomial.

INPUT:

• K – a 𝑝-adic number field

• F – a polynomial over the number field underlying 𝐾, or a list of such polynomials

• minimal_ramification – a positive integer (default: 1)

OUTPUT: the extension 𝐿/𝐾, where 𝐿 is a weak splitting field of F whose ramification index over 𝐾 is a
multiple of minimal_ramification.

NOTE:

68 Chapter 3. p-adic extensions

MCLF Documentation

For the time being, F has to be defined oover Q, and minimal ramification has to be prime to 𝑝.

factors_of_ramification_polynomial(precision=10)
Return the factorization of the ramification polynomial into factors with fixed slope.

OUTPUT: a dictionary factors such that 𝑔 = factors[s] is the maximal factor of the ramification
polynomial 𝐺 whose Newton polygon has a single slope 𝑠. We omit the factor with slope 𝑠 = −1.

lower_jumps()
Return the upper jumps of the ramification filtration of this extension.

ramification_filtration(upper_numbering=False)
Return the list of ramification jumps.

INPUT:

• upper_numbering – a boolean (default: False)

OUTPUT: an ordered list of pairs (𝑢,𝑚𝑢), where 𝑢 is a jump in the filtration of higher ramification groups
and 𝑚𝑢 is the order of the corresponding subgroup. The ordering is by increasing jumps.

If upper_numbering is False, then the filtration is defined as follows. Let 𝐿/𝐾 be a Galois extension
of 𝑝-adic number fields, with Galois group 𝐺. Let 𝜋 be a prime element of 𝐿, and let 𝑣𝐿 denote the
normalized valuation on 𝐿 (such that 𝑣𝐿(𝜋) = 1). For 𝑢 ≥ 0, the ramification subgroup 𝐺𝑢 consists of all
element 𝜎 of the inertia subgroup 𝐼 of 𝐺 such that

𝑣𝐿(𝜎(𝜋) − 𝜋) ≥ 𝑖+ 1.

In particular, 𝐼 = 𝐺0. An integer 𝑢 ≥ 0 is called a “jump” if 𝐺𝑢+1 is strictly contained in 𝐺𝑢. Note that
this is equivalent to the condition that there exists an element 𝜎 ∈ 𝐺 such that

𝑣𝐿(𝜎(𝜋) − 𝜋) = 𝑢+ 1.

It follows that the ramification filtration can easily be read off from the Newton polygon (with respect to
𝑣𝐿) of the polynomial

𝐺 := 𝑃 (𝑥+ 𝜋)/𝑥,

where 𝑃 is a minimal polynomial of 𝜋 over 𝐾. The polynomial 𝐺 is called the ramification polynomial of
the Galois extension 𝐿/𝐾.

ramification_polygon()
Return the ramification polygon of this extension.

The ramification polygon of a weak Galois extension 𝐿/𝐾 of 𝑝-adic number fields is the Newton polygon
of the ramification polynomial, i.e. the polynomial

𝐺 := 𝑃 (𝑥+ 𝜋)/𝑥

where 𝜋 is a prime element of 𝐿 which generates the extension 𝐿/𝐾 and 𝑃 is the minimal polynomial of
𝜋 over 𝐾𝑛𝑟, the maximal unramified subextension of .

The (strictly negative) slopes of the ramification polygon (with respect to the valuation 𝑣𝐿 on𝐿, normalized
such that 𝑣𝐿(𝜋𝐿) = 1) correspond to the jumps in the filtration of higher ramification groups, and the
abscissae of the vertices of the corresponding vertices are equal to the order of the ramification subgroups
that occur in the filtration.

NOTE:

• For the time being, we have to assume that 𝐾 = Q𝑝. In this case we can choose for 𝜋 the canonical
generator of the absolute number field 𝐿0 underlying 𝐿.

3.4. Weak p-adic Galois extensions 69

MCLF Documentation

ramification_polynomial(precision=20)
Return the ramification polynomial of this weak Galois extension.

The ramification polynomial is the polynomial

𝐺 := 𝑃 (𝑥+ 𝜋)/𝑥

where 𝜋 is a prime element of 𝐿 which generates the extension 𝐿/𝐾 and 𝑃 is the minimal polynomial of
𝜋 over 𝐾𝑛𝑟, the maximal unramified subextension of .

NOTE:

• For the time being, we have to assume that 𝐾 = Q𝑝. In this case we can choose for 𝜋 the canonical
generator of the absolute number field 𝐿0 underlying 𝐿.

ramification_subfield(u)
Return the ramification subfield corresponding to a given lower jump.

Here a nonnegative integer 𝑢 ≥ 0 is called a lower jump for the weak 𝑝-adic Galois extension 𝐿/𝐾 if
𝑢 is a jump in the filtration (𝐺𝑢)𝑢≥0 of the Galois group 𝐺 = 𝐺𝑎𝑙(𝐿𝑛𝑟/𝐾𝑛𝑟) of the induced extension
𝐿𝑛𝑟/𝐾𝑛𝑟. This is equivalent to the following condition: there exists an element 𝑔 ∈ 𝐺, such that

𝑣𝐿(𝑔(𝜋𝐿) − 𝜋𝐿) = 𝑢+ 1.

Here 𝑣𝐿 is the valuation of the extension field 𝐿 and 𝜋𝐿 is a prime element of 𝐿. We normalize 𝑣𝐿 such
that 𝑣𝐿(𝜋𝐿) = 1.

ramification_subfields(precision=1)
Return the ramification subfields of this weak Galois extension.

The set of all subfields is returned as dictionary, in which the keys are the lower jumps and the values are
the corresponding subfields, given as extension of the base field.

upper_jumps()
Return the lower jumps of the ramification filtration of this extension.

70 Chapter 3. p-adic extensions

CHAPTER 4

Semistable reduction of curves

4.1 Semistable reduction of a smooth projective curve over a local
field

Let 𝐾 be a field and 𝑣𝐾 a discrete valuation on 𝐾. We let 𝒪𝐾 denote the valuation ring of 𝑣𝐾 and F𝐾 the residue
field.

We consider a smooth projective curve 𝑌 over 𝐾. Our goal is to compute the semistable reduction of 𝑌 at 𝑣𝐾 and to
extract nontrivial arithmetic information on 𝑌 from this.

Let us define what we mean by ‘semistable reduction’ and by ‘computing’. By the famous result of Deligne and
Mumford there exists a finite, separable field extension 𝐿/𝐾, an extension 𝑣𝐿 of 𝑣𝐾 to 𝐿 (whose valuation ring we
call 𝒪𝐿) and an 𝒪𝐿-model 𝒴 of 𝑌𝐿 whose special fiber 𝑌 := 𝒴𝑠 is reduced and has at most ordinary double points as
singularities. We call 𝒴 a semistabel model and 𝑌 a semistable reduction of 𝑌 .

Let us assume, for simplicity, that 𝐾 is complete with respect to 𝑣𝐾 . Then the extension 𝑣𝐿 to 𝐿 is unique and
𝐿 is complete with respect to 𝑣𝐿. Then we we may moreover assume that 𝐿/𝐾 is a Galois extension and that the
tautological action of the Galois group of 𝐿/𝐾 extends to the semistable model 𝒴 . By restriction we obtain an action
of Gal(𝐿/𝐾) on 𝑌 . (In practise we mostly work with fields 𝐾 which are not complete. To make sense of the above
definitions, one simply has to replace 𝐾 by its completion.)

When we say the semistable reduction of 𝑌 we actually mean the extension 𝐿/𝐾, the F𝐿-curve 𝑌 and the action of
the former on the latter.

Note that neither 𝐿/𝐾 nor 𝑌 are unique, but their nonuniqueness is in a sense inessential. For instance, one may
replace 𝐿 by a larger Galois extension 𝐿′/𝐾; as a consequence the curve 𝑌 gets replaced by its base extension
to the residue field of 𝐿′. Also, certain blowups of the semistable model 𝒴 may result in a new semistable model
𝒴 with special fiber 𝑌 ′. The only difference between 𝑌 and 𝑌 ′ are some new irreducible components, which are
‘contractible’, i.e. they are smooth of genus 0 and meet the rest of 𝑌 ′ in at most two points.

At the moment, we do not have an effective method at our disposal to compute the semistable reduction of an arbitrary
curve 𝑌 , but only a set of methods which can be applied for certain classes of curves. We always assume that the curve
𝑌 is given as a finite separable cover

𝜑 : 𝑌 → 𝑋,

71

MCLF Documentation

where 𝑋 = P1
𝐾 is the projective line over 𝐾. There are two main cases that we can handle:

• the order of the monodromy group of 𝜑 (i.e. the Galois group of its Galois closure) is prime to the residue
characteristic of the valuation 𝑣𝐾 .

• 𝜑 is a Kummer cover of degree 𝑝, where 𝑝 is the (positive) residue characteristic of 𝑣𝐾

In the first case, the method of admissible reduction is available. In the second case, the results of [We17] tell us what
to do. In both cases, there exists a normal 𝒪𝐾-model 𝒳0 of 𝑋 = P1

𝐾 (the inertial model) whose normalization in the
function field of 𝑌𝐿 is a semistable model, for a sufficiently large finite extension 𝐿/𝐾. Once the right inertial model
is defined, the method for computing the semistable model 𝒴 and its special fiber 𝑌 are independent of the particular
case (these computations are done within the Sage class ReductionTree).

In this module we define a base class SemistableModel. An object in this class is initialized by a pair (𝑌, 𝑣𝐾) ,
where 𝑌 is a smooth projective curve over a field 𝐾 and 𝑣𝐾 is a discrete valuation on 𝐾. The class provides access to
functions which compute and extract information from the semistable reduction of 𝑌 with respect to 𝑣𝐾 .

Note: For the time being, we have to assume that 𝐾 is a number field. Then 𝑣𝐾 is the valuation associated to a prime
ideal of 𝐾 (i.e. a maximal ideal of its ring of integers).

AUTHORS:

• Stefan Wewers (2018-5-16): initial version

EXAMPLES:

We compute the stable reduction and the conductor exponent of the Picard curve

𝑌 : 𝑦3 = 𝑥4 − 1.

at the primes 𝑝 = 2, 3:

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^4-1, 3)
sage: Y
superelliptic curve y^3 = x^4 - 1 over Rational Field
sage: Y2 = SemistableModel(Y, v_2)
sage: Y2.is_semistable()
True

The stable reduction of 𝑌 at 𝑝 = 2 has four components, one of genus 0 and three of genus 1.

sage: [Z.genus() for Z in Y2.components()]
[0, 1, 1, 1]
sage: Y2.components_of_positive_genus()
[the smooth projective curve with Function field in u2 defined by u2^3 + x^4 + x^2,
the smooth projective curve with Function field in u2 defined by u2^3 + x^2 + x,
the smooth projective curve with Function field in u2 defined by u2^3 + x^2 + x + 1]

sage: Y2.conductor_exponent()
6
sage: v_3 = QQ.valuation(3)
sage: Y3 = SemistableModel(Y, v_3)
sage: Y3.is_semistable()
True
sage: Y3.components_of_positive_genus()
[the smooth projective curve with Function field in u2 defined by u2^3 + u2 + 2*x^4]

(continues on next page)

72 Chapter 4. Semistable reduction of curves

MCLF Documentation

(continued from previous page)

sage: Y3.conductor_exponent()
6

class mclf.semistable_reduction.semistable_models.SemistableModel(Y, vK,
check=True)

Bases: SageObject

This is a base class for various classes of curves and methods for computing the semistable reduction. Objects
of this class are determined by a smooth projective curve 𝑌 over a field 𝐾 and a discrete valuation 𝑣𝐾 on 𝐾.

INPUT:

• Y – a smooth projective curve

• vK – a discrete valuation on the base field 𝐾 of 𝑌

• check – a boolean (default: True)

Instantiation of this class actually creates an instant of a suitable subclass, which represents the kind of curve
for which an algorithm for computing the semistable reduction has been implemented. At the moment, there are
two such subclasses:

• If the degree of 𝑌 as a cover of the projective line is prime to the residue characteristic of 𝑣𝐾 then we
invoke the subclass AdmissibleModel. Note that this may not work: we can only guarantee that 𝑌 has
admissible reduction if the order of the Galois group of the cover 𝑌 → 𝑋 = P1

𝐾 is prime to the residue
characteristic.

• If 𝑌 is a superelliptic curve of degree 𝑝, where 𝑝 is the residue characteristic of 𝑣𝐾 and𝐾 has characteristic
0 then the subclass SuperpModel is invoked.

• if none of the above holds, then we either raise a NotImplementedError (if check=True) or we create an
AdmissibleModel (if check=False)

EXAMPLES:

sage: from mclf import *
sage: v_5 = QQ.valuation(5)
sage: FX.<x> = FunctionField(QQ)
sage: R.<y> = FX[]
sage: FY.<y> = FX.extension(y^3 - y^2 + x^4 + x + 1)
sage: Y = SmoothProjectiveCurve(FY)
sage: YY = SemistableModel(Y, v_5)
sage: YY
semistable model of the smooth projective curve with Function field in y defined
→˓by y^3 - y^2 + x^4 + x + 1, with respect to 5-adic valuation

The degree of 𝑌 as a cover of the projective line is 4, which is strictly less than 𝑝 = 5. Hence 𝑌 has admissible
reduction and we have created an instance of the class AdmissibleModel:

sage: isinstance(YY, AdmissibleModel)
True

Actually, 𝑌 has good reduction at 𝑝 = 5:

sage: YY.is_semistable()
True
sage: YY.components_of_positive_genus()
[the smooth projective curve with Function field in u1 defined by u1^3 + 4*u1^2 +
→˓x^4 + x + 1]

4.1. Semistable reduction of a smooth projective curve over a local field 73

MCLF Documentation

base_valuation()
Return the valuation on the constant base field of the curve.

components()
Return the list of all components of the admissible reduction of the curve.

components_of_positive_genus()
Return the list of all components of of the admissible reduction of the curve which have positive genus.

compute_semistable_reduction(verbosity=1)
Compute the semistable reduction of this curve (and report on the ongoing computation).

INPUT:

– verbosity - a nonnegative integer (default: 1)

OUTPUT:

Calling this function initiates the creation of a ReductionTree which essentially encodes a semistable
model of the curve. Depending on the verbosity level, messages will be printed which report on the
ongoing computation. If verbosity is set to 0, no message will be printed.

This method must be implemented by the subclasses of SemistableModel (which are characterized
by a particular method for computing a semistable model). At the moment, these subclasses are -
AdmissibleModel - Superell - Superp

conductor_exponent()
Return the conductor exponent at p of this curve.

EXAMPLES

In this example the conductor exponent was computed wrongly in a previous version:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: f = x^4+2*x^3+2*x^2+x
sage: Y = SuperellipticCurve(f, 3)
sage: Y3 = SemistableModel(Y, QQ.valuation(3))
sage: Y3.conductor_exponent()
11

constant_base_field()
Return the constant base field of this curve.

curve()
Return the curve.

is_semistable()
Check whether the model is really (potentially) semistable.

reduction_tree()
Return the reduction tree underlying this semistable model.

semistable_reduction()
Return the special fiber of this semistable model.

Note: not yet implemented

stable_reduction()
Return the special fiber of the stable model of this curve.

The stable model is obtained from this semistable model by contracting all ‘unstable’ components.

Note: not yet implemented

74 Chapter 4. Semistable reduction of curves

MCLF Documentation

4.2 Admissible reduction of curves

Let 𝐾 be a field equipped with a discrete valuation 𝑣𝐾 . For the time being, we assume that 𝐾 is a number field. Then
𝑣𝐾 is the p-adic valuation corresponding to a prime ideal p of 𝐾.

We consider a smooth projective curve 𝑌 over 𝐾. Our goal is to compute the semistable reduction of 𝑌 at 𝑣𝐾 and to
extract nontrivial arithmetic information on 𝑌 from this.

In this module we realize a class AdmissibleModel which computes the semistable reduction of a given curve 𝑌
at 𝑣𝐾 provided that it has admissible reduction at 𝑣𝐾 . This is always the case if the residue characteristic of 𝑣𝐾 is zero
or strictly larger than the degree of 𝑌 (as a cover of the projective line).

AUTHORS:

• Stefan Wewers (2018-7-03): initial version

EXAMPLES:

<Lots and lots of examples>

TO DO:

• more doctests

class mclf.semistable_reduction.admissible_reduction.AdmissibleModel(Y, vK)
Bases: mclf.semistable_reduction.semistable_models.SemistableModel

A class representing a curve 𝑌 over a field 𝐾 with a discrete valuation 𝑣𝐾 . Assuming that 𝑌 has (potentially)
admissible reduction at 𝑣𝐾 , we are able to compute the semistable reduction of 𝑌 at 𝑣𝐾 .

INPUT:

• Y – a smooth projective curve over a field 𝐾

• vK – a discrete valuation on 𝐾

OUTPUT: the object representing the curve 𝑌 and the valuation 𝑣𝐾 . This object has various functionalities
to compute the semistable reduction of 𝑌 relative to 𝑣𝐾 , and some arithmetic invariants associated to it (for
instance the “exponent of conductor” of 𝑌 with respect to 𝑣𝐾).

EXAMPLES:

original_model_of_curve()
Return the original model of the curves.

4.3 Semistable models of superelliptic curves of degree 𝑝

Let 𝐾 be a field of characteritic zero and 𝑣𝐾 a discrete valuation on 𝐾 whose residue field is finite of characteristic
𝑝 > 0.

Let 𝑓 ∈ 𝐾[𝑥] be a polynomial over 𝐾 which is not a 𝑝-th power and whose radical has degree at least three. We
consider the smooth projective curve 𝑌 over 𝐾 defined generically by the equation

𝑌 : 𝑦𝑝 = 𝑓(𝑥).

So 𝑌 is a superelliptic curve of degree 𝑝.

In this module we define a class SuperpModel which represents a semistable model of a superelliptic curve 𝑌 of
degree 𝑝, with respect to a 𝑝-adic valuation on the base field 𝐾 of 𝑌 .

The method to define and compute a semistable model in this particular case is taken from

4.2. Admissible reduction of curves 75

MCLF Documentation

• [We17] S. Wewers, Semistable reduction of superelliptic curves of degree p, preprint, 2017.

The key notion is the etale locus.

The superelliptic curve 𝑌 is, by definition, a cyclic cover

𝜑 : 𝑌 → 𝑋

of degree 𝑝 of the projective line𝑋 over the base field𝐾. We consider𝑋 and 𝑌 as analytic spaces over the completion
of 𝐾 at the base valuation 𝑣𝐾 . Let

𝜑 : 𝑌 → �̄�

denote the semistable reduction of the cover 𝑌 → 𝑋 . The etale locus is an affinoid subdomain 𝑋𝑒𝑡 of 𝑋 consisting
of those points which specialize to a point on �̄� above which the map 𝜑 is etale.

While the affinoid 𝑋𝑒𝑡 is determined by the semistable reduction of the cover 𝜑, conversely 𝑋𝑒𝑡 contains a lot of
information on the semistable reduction. The main result of [We17] gives an explicit description of the affinoid 𝑋𝑒𝑡

as a union of rational domains defined by rational functions which can be easily computed in terms of the polynomial
𝑓 defining 𝑌 .

Once the etale locus 𝑋𝑒𝑡 is computed, we can define an inertial model 𝒳0 of 𝑋 . A semistable model 𝒴 of 𝑌 can then
be obtained as the normalization of 𝒳0 inside 𝑌𝐿, for a sufficiently large finite extension 𝐿/𝐾.

The class SuperpModel is a subclass of the class SemistableModel and can be instantiated via its parent. All
methods to extract information about the semistable reduction of 𝑌 are simply inherited from SemistableModel.
The subclass itself only defines the methods to compute the etale locus and to create the corresponding inertail model.

AUTHORS:

• Stefan Wewers (2017-07-29): initial version

EXAMPLES:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: f = x^4 + x^2 + 1
sage: Y = SuperellipticCurve(f, 3)
sage: Y
superelliptic curve y^3 = x^4 + x^2 + 1 over Rational Field
sage: v_3 = QQ.valuation(3)
sage: YY = SuperpModel(Y, v_3)
sage: YY
semistable model of superelliptic curve Y: y^3 = x^4 + x^2 + 1 over Rational Field,
→˓with respect to 3-adic valuation
sage: YY.etale_locus()
Affinoid with 3 components:
Elementary affinoid defined by
v(x) >= 3/4
Elementary affinoid defined by
v(x - 2) >= 5/4
Elementary affinoid defined by
v(x + 2) >= 5/4

sage: YY.is_semistable()
True
sage: YY.components()
[the smooth projective curve with Function field in u1 defined by u1^3 + 2*x^4 + 2*x^
→˓2 + 2,
the smooth projective curve with Function field in u2 defined by u2^3 + u2 + 2*x^2,

(continues on next page)

76 Chapter 4. Semistable reduction of curves

MCLF Documentation

(continued from previous page)

the smooth projective curve with Function field in u2 defined by u2^3 + u2 + 2*x^2,
the smooth projective curve with Function field in u2 defined by u2^3 + u2 + 2*x^2]

sage: YY.conductor_exponent()
12

We check that issues #39 and #40 have been fixed:

sage: v_2 = QQ.valuation(2)
sage: f = x^5 - 5*x^4 + 3*x^3 - 3*x^2 + 4*x - 1
sage: Y = SuperellipticCurve(f, 2)
sage: Y2 = SemistableModel(Y, v_2)
sage: Y2.etale_locus()
Affinoid with 2 components:
Elementary affinoid defined by
v(x + 1) >= 2/3
Elementary affinoid defined by
v(x^4 + 4*x + 4) >= 8/3
sage: Y2.is_semistable()
True

TO DO:

• more doctests

class mclf.semistable_reduction.superp_models.SuperpModel(Y, vK)
Bases: mclf.semistable_reduction.semistable_models.SemistableModel

Return a semistable model of a superelliptic curve of degree 𝑝.

INPUT:

• Y – a superelliptic curve over a field 𝐾

• vK – a discrete valuation on 𝐾

The field 𝐾 must be of characteristic 0 and the residue characteristic of vK must be a prime 𝑝 which is equal to
the covering degree of 𝑌 .

OUTPUT: the object representing a semistable model of 𝑌 .

Note: For the time being, we need to make the following additional assumptions on the curve 𝑌 :

• the polynomial 𝑓 which is part of the defining equation 𝑦𝑝 = 𝑓(𝑥) is of degree prime to 𝑝.

This restrictions is preliminary and will be removed in a future version. Note that a superelliptic curve of degree
𝑝 can be written in the required form if and only if the map 𝑌 → 𝑋 has a 𝐾-rational branch point.

EXAMPLES:

compute_semistable_reduction()
Compute the semistable reduction of this curve, and report on the computation and the result.

etale_locus()

Return the etale locus of the cover 𝑌 → 𝑋 .

OUTPUT: the etal locus, an affinoid subdomain of the Berkovich line 𝑋 (the analytic space
associated to the projektive line over the completion of the base field 𝐾 with respect to the
valuation 𝑣𝐾).

EXAMPLES:

4.3. Semistable models of superelliptic curves of degree 𝑝 77

MCLF Documentation

sage: from mclf import *
sage: v_2 = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: f = x^3 + x^2 + 1
sage: Y = SuperellipticCurve(f, 2)
sage: Y
superelliptic curve y^2 = x^3 + x^2 + 1 over Rational Field
sage: YY = SuperpModel(Y, v_2)
sage: YY.etale_locus()
Elementary affinoid defined by
v(x^4 + 4/3*x^3 + 4*x + 4/3) >= 8/3

We check Example 4.14 from [BouWe16]. The original equation is 𝑦2 = 𝑓(𝑥) = 2𝑥3 +𝑥2 + 32,
and 𝑓 is not monic, as required. To fix this, we substitute 𝑥/2 and multiply with 4. Then the new
equation is 𝑦2 = 𝑥3 + 𝑥2 + 128:

sage: f = x^3 + x^2 + 128
sage: Y = SuperellipticCurve(f, 2)
sage: YY = SuperpModel(Y, v_2)
sage: YY.etale_locus()
Elementary affinoid defined by
v(x) >= 2
v(1/x) >= -5/2
<BLANKLINE>

Note: At the moment, the construction of the superelliptic curve 𝑌 requires that the polynomial 𝑓 defining
𝑌 is monic, integral with respect to 𝑣𝐾 and of degree prime to 𝑝. The motivation for this restriction, and
its result is that the etale locus is contained in the closed unit disk.

reduction_tree()
Return the reduction tree which determines the semistabel model.

mclf.semistable_reduction.superp_models.p_approximation(f, p)
Return the 𝑝-approximation of f.

INPUT:

• f – a polynomial of degree 𝑛 over a field 𝐾, with nonvanishing constant coefficient

• p – a prime number

OUTPUT:

Two polynomials ℎ and 𝑔 in 𝐾[𝑥], such that

• 𝑓 = 𝑎0(ℎ𝑝 + 𝑔), where 𝑎0 is the constant coefficient of 𝑓

• 𝑟 := 𝑑𝑒𝑔(ℎ) ≤ 𝑛/𝑝, and

• 𝑥(𝑟+1) divides 𝑔

Note that ℎ, 𝑔 are uniquely determined by these conditions.

mclf.semistable_reduction.superp_models.p_approximation_generic(f, p)
Return the generic 𝑝-approximation of f.

INPUT:

• f – a polynomial of degree 𝑛 over a field 𝐾, with nonvanishing constant coefficient

• p – a prime number

78 Chapter 4. Semistable reduction of curves

MCLF Documentation

OUTPUT:

Two polynomials 𝐻 and 𝐺 in 𝐾(𝑥)[𝑡] which are the 𝑝-approximation of the polynomial 𝐹 := 𝑓(𝑥 + 𝑡),
considered as polynomial in 𝑡.

4.4 Reduction trees: a data structure for semistable reduction of cov-
ers of the projective line.

Let 𝐾 be a field with a discrete valuation 𝑣𝐾 . We let 𝑋 := P1
𝐾 denote the projective line over 𝐾. We are also given a

finite cover

𝜑 : 𝑌 → 𝑋,

where 𝑌 is a smooth projective and absolutely irreducible curve. We assume that 𝑌 has positive genus.

Let 𝒳0 be a (normal) 𝑣𝐾-model of 𝑋 . Then for every finite field extension 𝐿/𝐾 and every extension 𝑣𝐿 of 𝑣𝐾 to 𝐿,
we obtain 𝑣𝐿-models 𝒳 of 𝑋𝐿 and 𝒴 of 𝑌𝐿 and a finite map 𝒴 → 𝒳 extending 𝜑 by normalizing 𝒳0. Restricting this
map to the special fiber yields a finite map

𝜑 : 𝑌 → �̄�

between projective curves over the residue field of 𝑣𝐿. We call this the reduction of 𝜑 over (𝐿, 𝑣𝐿) with respect to the
inertial model 𝒳0.

If we fix 𝜑 and 𝒳0 then there exists (𝐿, 𝑣𝐿) such that the curves 𝑌 and �̄� are reduced. If this is the case, any further
extension of (𝐿, 𝑣𝐿) will not change 𝑌 and �̄� in an essential way (more precisely, it will only replace 𝑌 and �̄� by
their base extensions to the larger residue field). Therefore we call the models 𝒴 and 𝒳 permanent.

We say that 𝒳0 is a semistable inertial model of 𝜑 if the permanent models 𝒴 and 𝒳 are semistable, and all irreducible
components of the (semistable) curves 𝑌 and �̄� are smooth (i.e. they do not intersect themselves).

The class ReductionTree defined in this module is a datastructure which encodes a cover 𝜑 : 𝑌 → 𝑋 and an
inertial model 𝒳0 as above, and provides functionality for computing the reduction 𝜑 : 𝑌 → �̄� with respect to
extensions (𝐿, 𝑣𝐿). In particular, it allows us to check whether the given inertial model 𝒳0 is semistable and, if this is
the case, to compute the semistable reduction of the curve 𝑌 .

The inertial model

The inertial model 𝒳0 of 𝑋 is determined by a Berkovich tree 𝑇 on the analytic space 𝑋𝑎𝑛 (the Berkovich line over
�̂�, the completion of 𝐾 with respect to 𝑣𝐾). Thus,

• the irreducible components of the special fiber of 𝒳0 (called the inertial components) correspond to the vertices
of 𝑇 which are points of type II on 𝑋𝑎𝑛.

• the vertices of 𝑇 which are points of type I (i.e. closed points on 𝑋) are considered marked points on 𝑋

• an edge of 𝑇 connecting two points of type II correspond to the point of intersection of the two corresponding
inertial components

• an edge of 𝑇 connecting a point of type II and a point of type II corresponds to the specialization of a marked
point to an inertial component

In particular, the inertial model 𝒳0 is a marked model. As a result, the models 𝒳 and 𝒴 induced by 𝒳0 and an extension
(𝐿, 𝑣𝐿) are marked models, too. The condition that 𝒳0 is a semistable inertial model therefore implies that 𝒳 and 𝒴
are marked semistable models, for 𝐿/𝐾 sufficiently large. Recall that this means that the marked points specialize to
the smooth points on the special fiber.

Reduction components

4.4. Reduction trees: a data structure for semistable reduction of covers of the projective line. 79

MCLF Documentation

Let us fix an inertial component 𝑍0. The interior of 𝑍0 is the affinoid subdomain of 𝑋𝑎𝑛 consisting of all points
which specialize to a point on 𝑍0 which is neither the point of intersection with another inertial component nor the
specialization of a marked point (exception: if there is a unique inertial component and no marking then this is all of
𝑋𝑎𝑛 and not an affinoid). We have to choose a basepoint for 𝑍0, which is a closed point on𝑋 lying inside the interior.
This choice is made in a heuristic manner; the degree of the base point should be as small as possible. Then a splitting
field for 𝑍0 is a finite extension (𝐿, 𝑣𝐿) of (𝐾, 𝑣𝐾) with the property that the base point and all points on 𝑌 above it
are �̂�-rational (where �̂� denotes the completion of 𝐿 with respect to 𝑣𝐿).

AUTHORS:

• Stefan Wewers (2017-8-10): initial version

EXAMPLES:

sage: from mclf import *
sage: FX.<x> = FunctionField(QQ)
sage: v_2 = QQ.valuation(2)
sage: X = BerkovichLine(FX, v_2)
sage: T = BerkovichTree(X, X.gauss_point())
sage: T, _ = T.add_point(X.infty())
sage: R.<y> = FX[]
sage: FY.<y> = FX.extension(y^2-x^3-1)
sage: Y = SmoothProjectiveCurve(FY)
sage: RT = ReductionTree(Y, v_2, T)
sage: RT
A reduction tree for the smooth projective curve with Function field in y defined by
→˓y^2 - x^3 - 1, relative to 2-adic valuation
sage: RT.inertial_components()
[inertial component of reduction tree with interior Elementary affinoid defined by
v(x) >= 0
]

TODO:

• better documentation

• more doctests

class mclf.semistable_reduction.reduction_trees.InertialComponent(R, xi,
is_separable=True)

Bases: SageObject

Return the inertial component corresponding to a type-II-point which is a vertex of 𝑇 .

INPUT:

• R – a reduction tree

• xi – a point of type II on the Berkovich line 𝑋 underlying 𝑅; it is assumed that 𝜉 is a vertex of the
Berkovich tree 𝑇 underlying 𝑅

• is_separable – boolean (default: True)

OUTPUT: The base component corresponding to 𝜉.

It is assumed that 𝜉 is a vertex of the given Berkovich tree. It thus corresponds to an irreducible component of
the special fiber of the inertial model 𝒳0. If this is not the case, an error is raised.

The inertial component which is generated by this command is an object for hosting methods which compute
information about the irreducible components of models 𝑌 of 𝑋 lying above 𝜉, over various extensions of the
base field.

80 Chapter 4. Semistable reduction of curves

MCLF Documentation

basepoint()
Return the base point.

The basepoint is a type-I-point on the underlying Berkovich line which specializes to the interior of this
component of the special fiber of 𝒳0. If no base point is given when the base component was created, then
such a point is computed now.

berkovich_line()
Return the underlying Berkovich line 𝑋 .

component()
Return the smooth projective curve underlying this inertial component.

Note that the constant base field of this curve is, by definition, the residue field of the base valuation. This
may differ from the field of constants of its function field.

component_degree(u=∞)
Return the sum of the degrees of the upper components above this inertial component.

Here the degree of an upper component ist the degree of its field of constants, as extension of the constant
base field.

function_field()
Return the function field of this inertial component (which is the residue field of the valuation correspond-
ing to it).

interior()
Return the interior of this inertial component.

OUTPUT:

an elementary affinoid subdomain of the underlying Berkovich line.

The interior of a base component is the elementary affinoid subdomain of the underlying Berkovich line
whose canonical reduction is an open affine subset of this inertial component of the inertial model 𝒳0.

It is chosen such that the canonical reduction does not contain the points of intersection with the other
components of 𝒳0,𝑠 and is disjoint from the residue classes of the marked points.

is_separable()
Return True is this inertial component is separable.

lower_components(u=∞)
Return the lower components relative to a given extension of the base field.

INPUT:

• u – an integer, or Infinity (default: Infinity)

OUTPUT: the list of lower components of the model of the reduction tree lying over this base component.
If 𝑢 = ∞ then these components are computed over the splitting field of the base component. Other-
wise, 𝑢 is assumed to be a break in the ramification filtration of the splitting field, and then we use the
corresponding subfield.

The entries of the list correspond to the irreducible components of the special fiber of the 𝑣𝐿-model 𝒳
(the normalization of 𝒳0) lying over the given inertial component. By definition, the constant base field of
these components is the residue field of 𝑣𝐿 (and it may differ from its field of constants).

outdegree(u=∞)
Return the outdegree of this inertial component.

INPUT:

• u – an integer, or Infinity (default: Infinity)

4.4. Reduction trees: a data structure for semistable reduction of covers of the projective line. 81

MCLF Documentation

OUTPUT: the sum of the degrees of all edges emanating from components of the curve 𝑌 𝑢 which lie
above this inertial component.

Here 𝑢 is a break in the ramification filtration of splitting field of this inertial component, and the curve
𝑌 𝑢 is the special fiber of the reduction of 𝑌 over the corresponding subfield 𝐿𝑢 (with respect to the
given inertial model). By edge we mean an edge of the component graph of the curve 𝑌 𝑢; it corresponds
to a point in which two components intersect. We call an edge outgoing (with respect to this inertail
component) if it lies above an edge of the component graph of the special fiber of the inertial model
which is directed away from this inertial component. The degree of an (upper) edge is the degree of the
corresponding point of 𝑌 𝑢, with respect to the residue field of 𝐿𝑢.

outgoing_edges()
Return the list of outgoing edges from this inertial component.

Here an edge is a point on this inertial component where it intersects another component; so it corresponds
to an edge on the Berkovich tree underlying the chosen inertial model. Outgoing is defined with respect to
the natural orientation of the Berkovich tree.

reduce(f)
Return the reduction of a rational function to this component.

INPUT:

• f – an element of the function field of the Berkovich line

It is assumed that 𝑓 a unit of the valuation ring corresponding to this component.

OUTPUT: the image of 𝑓 in the function field of this component.

EXAMPLES:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^3-1, 2)
sage: Y3 = SemistableModel(Y, QQ.valuation(3))
sage: Z = Y3.reduction_tree().inertial_components()[1]
sage: f = Z.valuation().element_with_valuation(1/2)^2/3
sage: Z.reduce(f)
x

reduction_conductor()
Return the contribution of this inertial component to the conductor exponent.

OUTPUT: an integer 𝑓𝑍 (where 𝑍 is this inertial component).

The conductor exponent 𝑓𝑌 of the curve 𝑌 can be written in the form

𝑓𝑌 = 1 +
∑︁
𝑍

𝑓𝑍

where 𝑍 runs over all inertial components of the reduction tree and 𝑓𝑍 is an integer, called the contribution
of 𝑍 to the conductor exponent.

TODO: Write better documentation.

reduction_genus(u=∞)
Return the sum of the genera of the upper components.

INPUT:

• u – an integer, or Infinity (default: Infinity)

82 Chapter 4. Semistable reduction of curves

MCLF Documentation

OUTPUT: a nonnegative integer, the sum of the genera of the upper components for this base component,
computed with respect to the splitting field. If 𝑢 ̸= ∞ then it is assumed that 𝑢 is a break in the ramification
filtration of the splitting field, and then the corresponding subfield is used instead.

reduction_tree()
Return the reduction tree of this component.

splitting_field(check=False)
Return a splitting field for this inertial component.

INPUT:

• check – a boolean (default: False)

OUTPUT: a weak Galois extension (𝐿, 𝑣𝐿) of the base field.

At the moment, the splitting field of a inertial component is a weak Galois extension (𝐿, 𝑣𝐿) of the base
field with the following properties:

• the basepoint becomes rational over the strict henselization of (𝐿, 𝑣𝐿)

• all lower components have multiplicities one over (𝐿, 𝑣𝐿)

• if the inertial component is marked as separable then the fiber of the cover 𝜑 : 𝑌 → 𝑋 over the base
point splits over the strict henselization of (𝐿, 𝑣𝐿)

Warning: For the moment, this only works if the basepoint is contained inside the closed unit disk.

type_II_point()
Return the type-II-point 𝜉 corresponding to this base component.

upper_components(u=∞)
Return the upper components relative to a given extension of the base field.

INPUT:

• u – an integer, or Infinity (default: Infinity)

OUTPUT: the list of upper components of the model of the reduction tree over this inertial component.
If 𝑢 = Infinity then the splitting field of this inertial component is used to compute the upper com-
ponents. Otherwise, 𝑢 must be step in the ramification filtration of the splitting field, and then the corre-
sponding subfield is used.

class mclf.semistable_reduction.reduction_trees.LowerComponent(Z0, vL, v, phi)
Bases: mclf.semistable_reduction.reduction_trees.ReductionComponent

Return the lower component corresponding to a given valuation.

A lower component is a reduction component 𝑍 on the base change 𝑋𝐿 of the Berkovich line 𝑋 to some finite
extension 𝐿/𝐾. It is by construction the inverse image of a given inertial component 𝑍0 on 𝑋 , which is part of
a reduction tree.

INPUT:

• Z0 – an inertial component of a reduction tree 𝑌

• vL – a discrete valuation on a finite extension 𝐿 of the base field of 𝑌 , extending the base valuation on 𝑌

• v – a discrete valuation on the base extension to 𝐿 of the function field 𝐹𝑋 , extending 𝑣𝐿

• phi – the natural morphism from the function field of Z0 into the residue field of v

OUTPUT: The lower component above 𝑍 corresponding to 𝑣.

4.4. Reduction trees: a data structure for semistable reduction of covers of the projective line. 83

MCLF Documentation

fiber_degree_in_upper_components(P)
Return the sum of the absolute degrees of the points above P on all upper components.

map_to_inertial_component()
Return the natural map from this lower component to its inertial component.

EXAMPLES:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^3-x, 2)
sage: Y3 = SemistableModel(Y,QQ.valuation(3))
sage: Z = Y3.reduction_tree().inertial_components()[0]
sage: W = Z.lower_components()[0]
sage: f = W.map_to_inertial_component()
sage: f.domain()
the smooth projective curve with Rational function field in x over Finite
→˓Field of size 3
sage: f.codomain()
the smooth projective curve with Rational function field in x over Finite
→˓Field of size 3

upper_components()
Return the list of all upper components lying above this lower component.

This lower component corresponds to a discrete valuation 𝑣 on a rational function field 𝐿(𝑥) extending the
valuation 𝑣𝐿, where 𝐿/𝐾 is some finite extension of the base field 𝐾. The upper components correspond
to the extensions of v to the function field of 𝑌𝐿 (which is a finite extension of 𝐿(𝑥)).

Since the computation of all extensions of a nonstandard valuation on a function field to a finite extension
is not yet part of Sage, we have to appeal to the MacLane algorithm ourselves.

EXAMPLES:

This example shows that extending valuations also works if the equation is not integral wrt the valuation v

sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(5*x^3 + 1, 2)
sage: Y2 = SemistableModel(Y, QQ.valuation(5))
sage: Y2.is_semistable() # indirect doctest
True

class mclf.semistable_reduction.reduction_trees.ReductionComponent
Bases: SageObject

The superclass for the classes LowerComponent and UpperComponent.

base_field()
Return the base field of this reduction component.

base_valuation()
Return the base valuation of this reduction component.

component()
Return the normalization of this reduction component.

constant_base_field()
Return the constant base field of this reduction component.

Note that this field is isomorphic but not equal to the residue field of the base valuation. The isomor-
phism can be obtained via the restriction of isomorphism between the residue field of the valuation

84 Chapter 4. Semistable reduction of curves

MCLF Documentation

corresponding to the component and the function field of the component (can be obtained via self.
from_residue_field()).

from_residue_field()
Return the isomorphism from the residue field of the valuation corresponding to this reduction component
to its function field.

function_field()
Return the function field of this reduction component.

Note that the function field of this reduction component is the residue field of the corresponding valuation
𝑣. It must not be confused with the domain of 𝑣, which is the function field of the generic fiber.

function_field_of_generic_fiber()
Return the function field of the generic fiber of the model underlying this reduction component.

inertial_component()
Return the inertial component underlying this reduction component.

multiplicity()
Return the multiplicity of this reduction component.

By definition, this is equal to the ramification index of the valuation corresponding to this component over
the base valuation.

reduce(f)
Return the image of a function on the generic fiber to this component.

reduction_tree()
Return the reduction tree underlying the reduction component.

valuation()
Return the valuation corresponding to this reduction component.

class mclf.semistable_reduction.reduction_trees.ReductionTree(Y, vK, T, separa-
ble_components=None)

Bases: SageObject

Initialize and return a reduction tree associated to a curve and a valuation.

INPUT:

• Y – a curve over a basefield 𝐾, given as SmoothProjectiveCurve

• vK – a discrete valuation on 𝐾

• T – a Berkovich tree on the Berkovich line 𝑋𝑎𝑛 underlying (𝑌, 𝑣𝐾)

• separable_components – a list of type-II-points on 𝑋𝑎𝑛 which are vertices of 𝑇 (or None)

OUTPUT: a reduction tree for Y relative to vK; the inertial model 𝒳0 is the marked model of 𝑋 induced by the
Berkovich tree 𝑇 .

Note that the tree 𝑇 will be modified by the creation of the reduction tree.

Note: In the present release, the base field 𝐾 must be the field of rational numbers.

add_inertial_component(xi)
Add a new inertial component to the list of such.

INPUT:

• xi – a point of type II on the underlying Berkovich line; it is assumed that xi is a vertex of the
Berkovich tree 𝑇

4.4. Reduction trees: a data structure for semistable reduction of covers of the projective line. 85

MCLF Documentation

OUTPUT: a new inertial component 𝑍 is created and appended to the list of all inertial components.
Moreover, 𝑍 is assigned to the new attribute inertial_component of the subtree of 𝑇 with root 𝜉.

base_field()
Return the base field.

base_valuation()
Return the specified valuation of the base field.

berkovich_line()
Return the Berkovich line 𝑋 of which the curve 𝑌 is a cover.

berkovich_tree()
Return the Berkovich tree underlying this reduction tree.

curve()
Return the curve 𝑌 .

inertial_components()
Return the list of inertial components.

is_semistable()
Check wether the reduction specified by this object is semistable.

reduction_conductor()
Return the conductor of the curve.

OUTPUT: a nonnegative integer, which is the conductor of the local Galois representation associated to
the reduction which is specified in this ReductionTree. If the reduction is semistable, then the result
is the conductor of 𝑌 .

TODO: Write better documentation.

EXAMPLES:

We check that the conductor exponent takes the component graph into account as well:

sage: from mclf import *
sage: R.<x> = QQ[]
sage: Y = SuperellipticCurve(x^3 + x^2 + 3, 2)
sage: Y3 = SemistableModel(Y, QQ.valuation(3))
sage: Y3.is_semistable()
True
sage: Y3.conductor_exponent() # indirect doctest
1

reduction_genus()
Return the genus of the reduction.

OUTPUT: a nonnegative integer, which is the arithmetic genus of the reduction of the curve 𝑌 specified
by the data in this ReductionTree, provided this reduction is semistable.

In fact, the number we compute is the sum of the genera of the upper components (i.e. the normalizations
of the irreducible components of 𝑌) and the number of loops of the component graph of 𝑌 , which is
(number of double points) - (number of components) + 1.

EXAMPLES:

We test that the arithmetic genus of a totally degenerate curve is computed correctly:

sage: from mclf import *
sage: R.<x> = QQ[]

(continues on next page)

86 Chapter 4. Semistable reduction of curves

MCLF Documentation

(continued from previous page)

sage: v_3 = QQ.valuation(3)
sage: f = (x^2 - 3)*(x^2 + 3)*(x^3 - 3)
sage: Y = SuperellipticCurve(f, 2)
sage: Y.genus()
3
sage: Y3 = SemistableModel(Y, v_3)
sage: Y3.reduction_tree().reduction_genus()
3

class mclf.semistable_reduction.reduction_trees.UpperComponent(Z, v)
Bases: mclf.semistable_reduction.reduction_trees.ReductionComponent

Return the upper component above this lower component, corresponding to a given valuation.

INPUT:

• Z – a lower component of a reduction tree 𝑌

• v – a discrete valuation on the base extension to 𝐿 of the function field 𝐹𝑌 , extending the valuation
corresponding to 𝑍

OUTPUT: The upper component above 𝑍 corresponding to 𝑣.

Note that the constant base fields of the upper and the lower components are equal, by definition, and isomorphic
to the residue field of 𝐿.

field_of_constants_degree()
Return the degree of the field of constants over the constant base field of this upper reduction component.

genus()
Return the genus of this upper reduction component.

lower_component()
Return the lower component underneath this upper component.

map_to_lower_component()
Return the natural map from this upper component to the lower component beneath.

mclf.semistable_reduction.reduction_trees.make_function_field(K)
Return the function field isomorphic to this field, an isomorphism, and its inverse.

INPUT:

• K – a field

OUTPUT: A triple (𝐹, 𝜑, 𝜓), where 𝐹 is a rational function field, 𝜑 : 𝐾 → 𝐹 is a field isomorphism and 𝜓 the
inverse of 𝜑.

It is assumed that 𝐾 is either the fraction field of a polynomial ring over a finite field 𝑘, or a finite simple
extension of such a field.

In the first case, 𝐹 = 𝑘1(𝑥) is a rational function field over a finite field 𝑘1, where 𝑘1 as an absolute finite field
isomorphic to 𝑘. In the second case, 𝐹 is a finite simple extension of a rational function field as in the first case.

Note: this command seems to be partly superflous by now, because the residue of a valuation is already of type
“function field” whenever this makes sense. However, even if 𝐾 is a function field over a finite field, it is not
guaranteed that the constant base field is a ‘true’ finite field, and then it is important to change that.

4.4. Reduction trees: a data structure for semistable reduction of covers of the projective line. 87

MCLF Documentation

88 Chapter 4. Semistable reduction of curves

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

89

MCLF Documentation

90 Chapter 5. Indices and tables

Bibliography

[We17] S. Wewers, Semistable reduction of superelliptic curves of degree p, preprint, 2017.

91

MCLF Documentation

92 Bibliography

Python Module Index

m
mclf.berkovich.affinoid_domain, 38
mclf.berkovich.berkovich_line, 19
mclf.berkovich.berkovich_trees, 30
mclf.berkovich.piecewise_affine_functions,

47
mclf.berkovich.type_V_points, 36
mclf.curves.morphisms_of_smooth_projective_curves,

14
mclf.curves.smooth_projective_curves, 3
mclf.curves.superelliptic_curves, 17
mclf.padic_extensions.fake_padic_completions,

57
mclf.padic_extensions.fake_padic_embeddings,

64
mclf.padic_extensions.fake_padic_extensions,

65
mclf.padic_extensions.weak_padic_galois_extensions,

67
mclf.semistable_reduction.admissible_reduction,

74
mclf.semistable_reduction.reduction_trees,

79
mclf.semistable_reduction.semistable_models,

71
mclf.semistable_reduction.superp_models,

75

93

MCLF Documentation

94 Python Module Index

Index

A
absolute_degree() (in module

mclf.curves.smooth_projective_curves), 12
absolute_degree()

(mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve
method), 5

absolute_degree()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 58

absolute_inertia_degree()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 58

absolute_ramification_degree()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 58

adapt_to_function()
(mclf.berkovich.berkovich_trees.BerkovichTree
method), 31

add_inertial_component()
(mclf.semistable_reduction.reduction_trees.ReductionTree
method), 85

add_point() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 31

adjacent_vertices()
(mclf.berkovich.berkovich_trees.BerkovichTree
method), 32

AdmissibleModel (class in
mclf.semistable_reduction.admissible_reduction),
75

AffineFunction (class in
mclf.berkovich.piecewise_affine_functions),
48

affinoid_domain()
(mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction
method), 53

affinoid_subtree()
(mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 39

affinoid_subtree_in_hole()

(mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 39

AffinoidDomainOnBerkovichLine (class in
mclf.berkovich.affinoid_domain), 39

AffinoidTree (class in
mclf.berkovich.affinoid_domain), 42

all_polynomials() (in module
mclf.berkovich.affinoid_domain), 46

approximate_factorization()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 58

approximate_irreducible_factor()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 58

approximation() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
method), 26

approximation() (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 27

B
base_change_matrix()

(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 59

base_field() (mclf.berkovich.berkovich_line.PointOnBerkovichLine
method), 25

base_field() (mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension
method), 66

base_field() (mclf.semistable_reduction.reduction_trees.ReductionComponent
method), 84

base_field() (mclf.semistable_reduction.reduction_trees.ReductionTree
method), 86

base_valuation() (mclf.berkovich.berkovich_line.PointOnBerkovichLine
method), 25

base_valuation() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 59

base_valuation() (mclf.semistable_reduction.reduction_trees.ReductionComponent
method), 84

base_valuation() (mclf.semistable_reduction.reduction_trees.ReductionTree
method), 86

95

MCLF Documentation

base_valuation() (mclf.semistable_reduction.semistable_models.SemistableModel
method), 73

basepoint() (mclf.semistable_reduction.reduction_trees.InertialComponent
method), 80

berkovich_line() (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 40

berkovich_line() (mclf.berkovich.berkovich_line.PointOnBerkovichLine
method), 25

berkovich_line() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 32

berkovich_line() (mclf.berkovich.piecewise_affine_functions.AffineFunction
method), 49

berkovich_line() (mclf.berkovich.piecewise_affine_functions.DirectedPath
method), 50

berkovich_line() (mclf.berkovich.piecewise_affine_functions.Domain
method), 51

berkovich_line() (mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction
method), 53

berkovich_line() (mclf.berkovich.type_V_points.TypeVPointOnBerkovichLine
method), 37

berkovich_line() (mclf.semistable_reduction.reduction_trees.InertialComponent
method), 81

berkovich_line() (mclf.semistable_reduction.reduction_trees.ReductionTree
method), 86

berkovich_tree() (mclf.semistable_reduction.reduction_trees.ReductionTree
method), 86

BerkovichLine (class in
mclf.berkovich.berkovich_line), 22

BerkovichTree (class in
mclf.berkovich.berkovich_trees), 31

boundary() (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 40

boundary_point() (mclf.berkovich.type_V_points.TypeVPointOnBerkovichLine
method), 37

C
characteristic_polynomial()

(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 59

characteristic_polynomial_mod()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 59

children() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 32

ClosedUnitDisk (class in
mclf.berkovich.affinoid_domain), 44

codomain() (mclf.curves.morphisms_of_smooth_projective_curves.MorphismOfSmoothProjectiveCurves
method), 16

component() (mclf.semistable_reduction.reduction_trees.InertialComponent
method), 81

component() (mclf.semistable_reduction.reduction_trees.ReductionComponent
method), 84

component_degree()
(mclf.semistable_reduction.reduction_trees.InertialComponent

method), 81
component_jumps() (in module

mclf.berkovich.berkovich_trees), 35
components() (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine

method), 40
components() (mclf.semistable_reduction.semistable_models.SemistableModel

method), 74
components_of_positive_genus()

(mclf.semistable_reduction.semistable_models.SemistableModel
method), 74

compute_connected_components()
(mclf.berkovich.affinoid_domain.AffinoidTree
method), 43

compute_semistable_reduction()
(mclf.semistable_reduction.semistable_models.SemistableModel
method), 74

compute_semistable_reduction()
(mclf.semistable_reduction.superp_models.SuperpModel
method), 77

compute_separable_model()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 7

compute_value() (in module
mclf.curves.smooth_projective_curves), 12

conductor_exponent()
(mclf.semistable_reduction.semistable_models.SemistableModel
method), 74

connected_component_tree()
(mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 40

connected_component_tree()
(mclf.berkovich.affinoid_domain.UnionOfDomains
method), 45

connected_components()
(mclf.berkovich.affinoid_domain.AffinoidTree
method), 43

constant_base_field()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 7

constant_base_field()
(mclf.semistable_reduction.reduction_trees.ReductionComponent
method), 84

constant_base_field()
(mclf.semistable_reduction.semistable_models.SemistableModel
method), 74

contains_infty() (mclf.berkovich.piecewise_affine_functions.Domain
method), 51

coordinate_functions()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 7

coordinates() (mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve
method), 5

copy() (mclf.berkovich.affinoid_domain.AffinoidTree
method), 43

96 Index

MCLF Documentation

copy() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 32

count_points() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 7

covering_degree()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 7

covering_degree()
(mclf.curves.superelliptic_curves.SuperellipticCurve
method), 18

create_graph_recursive() (in module
mclf.berkovich.berkovich_trees), 35

curve() (mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve
method), 5

curve() (mclf.semistable_reduction.reduction_trees.ReductionTree
method), 86

curve() (mclf.semistable_reduction.semistable_models.SemistableModel
method), 74

D
degree() (mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve

method), 5
degree() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve

method), 7
degree() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion

method), 59
degree() (mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension

method), 66
degree_of_inseparability()

(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 7

DirectedPath (class in
mclf.berkovich.piecewise_affine_functions),
49

direction_from_parent()
(mclf.berkovich.berkovich_trees.BerkovichTree
method), 32

direction_to_parent()
(mclf.berkovich.berkovich_trees.BerkovichTree
method), 32

Discoid (class in mclf.berkovich.piecewise_affine_functions),
50

discoid() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
method), 26

discoid() (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 28

divisor_of_poles()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 7

divisor_of_zeroes()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 8

Domain (class in mclf.berkovich.piecewise_affine_functions),
51

domain() (mclf.berkovich.piecewise_affine_functions.AffineFunction
method), 49

domain() (mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction
method), 53

domain() (mclf.curves.morphisms_of_smooth_projective_curves.MorphismOfSmoothProjectiveCurves
method), 16

E
e_f_of_valuation() (in module

mclf.curves.smooth_projective_curves), 12
element_from_vector()

(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 59

ElementaryAffinoidOnBerkovichLine (class
in mclf.berkovich.affinoid_domain), 45

equation() (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 28

etale_locus() (mclf.semistable_reduction.superp_models.SuperpModel
method), 77

eval() (mclf.padic_extensions.fake_padic_embeddings.FakepAdicEmbedding
method), 65

extension() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 60

extension_degree() (in module
mclf.curves.smooth_projective_curves), 13

extension_field()
(mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension
method), 66

extension_of_finite_field() (in module
mclf.curves.smooth_projective_curves), 13

F
factors_of_ramification_polynomial()

(mclf.padic_extensions.weak_padic_galois_extensions.WeakPadicGaloisExtension
method), 69

FakepAdicCompletion (class in
mclf.padic_extensions.fake_padic_completions),
58

FakepAdicEmbedding (class in
mclf.padic_extensions.fake_padic_embeddings),
64

FakepAdicExtension (class in
mclf.padic_extensions.fake_padic_extensions),
66

fiber() (mclf.curves.morphisms_of_smooth_projective_curves.MorphismOfSmoothProjectiveCurves
method), 16

fiber() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 8

fiber_degree() (mclf.curves.morphisms_of_smooth_projective_curves.MorphismOfSmoothProjectiveCurves
method), 16

fiber_degree_in_upper_components()
(mclf.semistable_reduction.reduction_trees.LowerComponent
method), 83

Index 97

MCLF Documentation

field_of_constant_degree_of_polynomial()
(in module mclf.curves.smooth_projective_curves),
13

field_of_constants()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 8

field_of_constants_degree()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 8

field_of_constants_degree()
(mclf.semistable_reduction.reduction_trees.UpperComponent
method), 87

find_next_points_with_value()
(mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction
method), 53

find_next_zeroes()
(mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction
method), 54

find_point() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 32

find_zero() (mclf.berkovich.berkovich_line.BerkovichLine
method), 22

from_residue_field()
(mclf.semistable_reduction.reduction_trees.ReductionComponent
method), 85

function_field() (mclf.berkovich.berkovich_line.PointOnBerkovichLine
method), 25

function_field() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 9

function_field() (mclf.semistable_reduction.reduction_trees.InertialComponent
method), 81

function_field() (mclf.semistable_reduction.reduction_trees.ReductionComponent
method), 85

function_field_of_generic_fiber()
(mclf.semistable_reduction.reduction_trees.ReductionComponent
method), 85

function_field_valuation()
(mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 28

G
gauss_point() (mclf.berkovich.berkovich_line.BerkovichLine

method), 22
generator() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion

method), 60
genus() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve

method), 9
genus() (mclf.semistable_reduction.reduction_trees.UpperComponent

method), 87
good_reduction() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve

method), 10
graph() (mclf.berkovich.berkovich_trees.BerkovichTree

method), 33

H
has_parent() (mclf.berkovich.berkovich_trees.BerkovichTree

method), 33
holes() (mclf.berkovich.affinoid_domain.AffinoidTree

method), 43

I
improve_approximation()

(mclf.padic_extensions.fake_padic_embeddings.FakepAdicEmbedding
method), 65

improved_approximation()
(mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
method), 26

improved_approximation()
(mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 28

inequalities() (mclf.berkovich.affinoid_domain.ElementaryAffinoidOnBerkovichLine
method), 45

inequalities() (mclf.berkovich.piecewise_affine_functions.Domain
method), 51

inertia_degree() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 60

inertia_degree() (mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension
method), 66

inertial_component()
(mclf.semistable_reduction.reduction_trees.ReductionComponent
method), 85

inertial_components()
(mclf.semistable_reduction.reduction_trees.ReductionTree
method), 86

InertialComponent (class in
mclf.semistable_reduction.reduction_trees), 80

infty() (mclf.berkovich.berkovich_line.BerkovichLine
method), 23

initial_parameter()
(mclf.berkovich.piecewise_affine_functions.DirectedPath
method), 50

initial_point() (mclf.berkovich.piecewise_affine_functions.AffineFunction
method), 49

initial_point() (mclf.berkovich.piecewise_affine_functions.DirectedPath
method), 50

initial_point() (mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction
method), 54

initial_slope() (mclf.berkovich.piecewise_affine_functions.DirectedPath
method), 50

initial_value() (mclf.berkovich.piecewise_affine_functions.AffineFunction
method), 49

initial_value() (mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction
method), 54

integral_basis_of_unramified_subfield()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 60

interior() (mclf.semistable_reduction.reduction_trees.InertialComponent
method), 81

98 Index

MCLF Documentation

intersection() (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 40

intersection_with_unit_disk()
(mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 40

intersection_with_unit_disk()
(mclf.berkovich.affinoid_domain.AffinoidTree
method), 44

inverse_generator() (in module
mclf.berkovich.berkovich_line), 29

inverse_parameter()
(mclf.berkovich.berkovich_line.PointOnBerkovichLine
method), 25

is_approximate_irreducible_factor()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 60

is_constant() (mclf.berkovich.piecewise_affine_functions.AffineFunction
method), 49

is_constant() (mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction
method), 54

is_empty() (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 40

is_empty() (mclf.berkovich.affinoid_domain.ElementaryAffinoidOnBerkovichLine
method), 45

is_equal() (mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve
method), 5

is_full_berkovich_line()
(mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 40

is_full_berkovich_line()
(mclf.berkovich.affinoid_domain.ElementaryAffinoidOnBerkovichLine
method), 45

is_full_berkovich_line()
(mclf.berkovich.piecewise_affine_functions.Domain
method), 51

is_gauss_point() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
method), 26

is_gauss_point() (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 28

is_generator() (in module
mclf.berkovich.berkovich_line), 29

is_in() (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 40

is_in() (mclf.berkovich.affinoid_domain.AffinoidTree
method), 44

is_in() (mclf.berkovich.affinoid_domain.UnionOfDomains
method), 46

is_in_domain() (mclf.berkovich.piecewise_affine_functions.AffineFunction
method), 49

is_in_domain() (mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction
method), 54

is_in_unit_disk()
(mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
method), 26

is_in_unit_disk()
(mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 28

is_increasing() (mclf.berkovich.piecewise_affine_functions.AffineFunction
method), 49

is_inductive() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
method), 26

is_inductive() (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 28

is_infinity() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
method), 27

is_leaf() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 33

is_limit_path() (mclf.berkovich.piecewise_affine_functions.DirectedPath
method), 50

is_limit_point() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
method), 27

is_limit_point() (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 28

is_Qp() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 60

is_semistable() (mclf.semistable_reduction.reduction_trees.ReductionTree
method), 86

is_semistable() (mclf.semistable_reduction.semistable_models.SemistableModel
method), 74

is_separable() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 10

is_separable() (mclf.semistable_reduction.reduction_trees.InertialComponent
method), 81

is_structure_map()
(mclf.curves.morphisms_of_smooth_projective_curves.MorphismOfSmoothProjectiveCurves
method), 17

K
kummer_gen() (mclf.curves.superelliptic_curves.SuperellipticCurve

method), 18

L
leaves() (mclf.berkovich.berkovich_trees.BerkovichTree

method), 33
lower_component()

(mclf.semistable_reduction.reduction_trees.UpperComponent
method), 87

lower_components()
(mclf.semistable_reduction.reduction_trees.InertialComponent
method), 81

lower_jumps() (mclf.padic_extensions.weak_padic_galois_extensions.WeakPadicGaloisExtension
method), 69

LowerComponent (class in
mclf.semistable_reduction.reduction_trees), 83

M
make_child() (mclf.berkovich.berkovich_trees.BerkovichTree

method), 33

Index 99

MCLF Documentation

make_finite_field() (in module
mclf.curves.smooth_projective_curves), 13

make_function_field() (in module
mclf.semistable_reduction.reduction_trees), 87

make_parent() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 33

map_to_inertial_component()
(mclf.semistable_reduction.reduction_trees.LowerComponent
method), 84

map_to_lower_component()
(mclf.semistable_reduction.reduction_trees.UpperComponent
method), 87

matrix() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 61

mclf.berkovich.affinoid_domain (module),
38

mclf.berkovich.berkovich_line (module), 19
mclf.berkovich.berkovich_trees (module),

30
mclf.berkovich.piecewise_affine_functions

(module), 47
mclf.berkovich.type_V_points (module), 36
mclf.curves.morphisms_of_smooth_projective_curves

(module), 14
mclf.curves.smooth_projective_curves

(module), 3
mclf.curves.superelliptic_curves (mod-

ule), 17
mclf.padic_extensions.fake_padic_completions

(module), 57
mclf.padic_extensions.fake_padic_embeddings

(module), 64
mclf.padic_extensions.fake_padic_extensions

(module), 65
mclf.padic_extensions.weak_padic_galois_extensions

(module), 67
mclf.semistable_reduction.admissible_reduction

(module), 74
mclf.semistable_reduction.reduction_trees

(module), 79
mclf.semistable_reduction.semistable_models

(module), 71
mclf.semistable_reduction.superp_models

(module), 75
minimal_point() (mclf.berkovich.piecewise_affine_functions.Discoid

method), 51
minimal_point() (mclf.berkovich.piecewise_affine_functions.Domain

method), 52
minimal_points() (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine

method), 41
minimal_points() (mclf.berkovich.affinoid_domain.AffinoidTree

method), 44
minimal_points() (mclf.berkovich.affinoid_domain.UnionOfDomains

method), 46

minor_valuation()
(mclf.berkovich.type_V_points.TypeVPointOnBerkovichLine
method), 37

minpoly_over_unramified_subextension()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 61

MorphismOfSmoothProjectiveCurves (class in
mclf.curves.morphisms_of_smooth_projective_curves),
15

multiplicity() (mclf.semistable_reduction.reduction_trees.ReductionComponent
method), 85

N
normalized_valuation()

(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 61

normalized_valuation()
(mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension
method), 66

number_field() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 61

number_of_components()
(mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 41

O
open_annuloid() (in module

mclf.berkovich.piecewise_affine_functions),
54

open_discoid() (in module
mclf.berkovich.piecewise_affine_functions),
55

open_discoid() (mclf.berkovich.type_V_points.TypeVPointOnBerkovichLine
method), 38

order() (mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve
method), 6

original_model_of_curve()
(mclf.semistable_reduction.admissible_reduction.AdmissibleModel
method), 75

outdegree() (mclf.semistable_reduction.reduction_trees.InertialComponent
method), 81

outgoing_edges() (mclf.semistable_reduction.reduction_trees.InertialComponent
method), 82

P
p() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion

method), 61
p() (mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension

method), 66
p_approximation() (in module

mclf.semistable_reduction.superp_models),
78

100 Index

MCLF Documentation

p_approximation_generic() (in module
mclf.semistable_reduction.superp_models),
78

parameter() (mclf.berkovich.berkovich_line.PointOnBerkovichLine
method), 25

parameter() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
method), 27

parent() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 33

path() (mclf.berkovich.piecewise_affine_functions.AffineFunction
method), 49

paths() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 33

permanent_completion()
(mclf.berkovich.berkovich_trees.BerkovichTree
method), 33

phi() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 10

PiecewiseAffineFunction (class in
mclf.berkovich.piecewise_affine_functions),
52

plane_equation() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 10

point() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 10

point_close_to_boundary()
(mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 41

point_from_pseudovaluation()
(mclf.berkovich.berkovich_line.BerkovichLine
method), 23

point_from_pseudovaluation_on_polynomial_ring()
(mclf.berkovich.berkovich_line.BerkovichLine
method), 23

point_from_valuation()
(mclf.berkovich.berkovich_line.BerkovichLine
method), 24

point_inside_discoid()
(mclf.berkovich.type_V_points.TypeVPointOnBerkovichLine
method), 38

PointOnBerkovichLine (class in
mclf.berkovich.berkovich_line), 24

PointOnSmoothProjectiveCurve (class in
mclf.curves.smooth_projective_curves), 5

points_with_coordinates()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 10

polynomial() (mclf.curves.superelliptic_curves.SuperellipticCurve
method), 18

polynomial() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 61

polynomial() (mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension
method), 66

position() (mclf.berkovich.berkovich_trees.BerkovichTree

method), 34
potential_branch_divisor()

(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 10

prime_of_good_reduction()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 10

principal_divisor()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 11

print_tree() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 34

pseudovaluation()
(mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
method), 27

pseudovaluation()
(mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 28

pseudovaluation_on_polynomial_ring()
(mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
method), 27

pseudovaluation_on_polynomial_ring()
(mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 29

pullback() (mclf.curves.morphisms_of_smooth_projective_curves.MorphismOfSmoothProjectiveCurves
method), 17

pullback_map() (mclf.curves.morphisms_of_smooth_projective_curves.MorphismOfSmoothProjectiveCurves
method), 17

R
ramification_degree()

(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 61

ramification_degree()
(mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension
method), 67

ramification_divisor()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 11

ramification_filtration()
(mclf.padic_extensions.weak_padic_galois_extensions.WeakPadicGaloisExtension
method), 69

ramification_polygon()
(mclf.padic_extensions.weak_padic_galois_extensions.WeakPadicGaloisExtension
method), 69

ramification_polynomial()
(mclf.padic_extensions.weak_padic_galois_extensions.WeakPadicGaloisExtension
method), 69

ramification_subfield()
(mclf.padic_extensions.weak_padic_galois_extensions.WeakPadicGaloisExtension
method), 70

ramification_subfields()
(mclf.padic_extensions.weak_padic_galois_extensions.WeakPadicGaloisExtension
method), 70

Index 101

MCLF Documentation

ramified_extension()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 61

random_point() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 11

rational_domain() (in module
mclf.berkovich.affinoid_domain), 46

rational_function_field()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 11

reduce() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 62

reduce() (mclf.semistable_reduction.reduction_trees.InertialComponent
method), 82

reduce() (mclf.semistable_reduction.reduction_trees.ReductionComponent
method), 85

reduce_rational_number()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 62

reduction_conductor()
(mclf.semistable_reduction.reduction_trees.InertialComponent
method), 82

reduction_conductor()
(mclf.semistable_reduction.reduction_trees.ReductionTree
method), 86

reduction_genus()
(mclf.semistable_reduction.reduction_trees.InertialComponent
method), 82

reduction_genus()
(mclf.semistable_reduction.reduction_trees.ReductionTree
method), 86

reduction_tree() (mclf.semistable_reduction.reduction_trees.InertialComponent
method), 83

reduction_tree() (mclf.semistable_reduction.reduction_trees.ReductionComponent
method), 85

reduction_tree() (mclf.semistable_reduction.semistable_models.SemistableModel
method), 74

reduction_tree() (mclf.semistable_reduction.superp_models.SuperpModel
method), 78

ReductionComponent (class in
mclf.semistable_reduction.reduction_trees), 84

ReductionTree (class in
mclf.semistable_reduction.reduction_trees), 85

remove_child() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 34

remove_point() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 35

replace_subtree() (in module
mclf.berkovich.berkovich_trees), 35

residue_field() (mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve
method), 6

restrictions() (mclf.berkovich.piecewise_affine_functions.PiecewiseAffineFunction
method), 54

root() (mclf.berkovich.berkovich_trees.BerkovichTree

method), 35
root_is_in() (mclf.berkovich.affinoid_domain.AffinoidTree

method), 44

S
semistable_reduction()

(mclf.semistable_reduction.semistable_models.SemistableModel
method), 74

SemistableModel (class in
mclf.semistable_reduction.semistable_models),
73

separable_model()
(mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 11

separate_points() (in module
mclf.curves.smooth_projective_curves), 13

separate_two_points() (in module
mclf.curves.smooth_projective_curves), 14

show() (mclf.berkovich.affinoid_domain.AffinoidTree
method), 44

simplify() (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 42

simplify() (mclf.berkovich.affinoid_domain.AffinoidTree
method), 44

simplify_irreducible_polynomial()
(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 62

simplify_tree_at_vertex() (in module
mclf.berkovich.affinoid_domain), 47

singular_locus() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 12

SmoothProjectiveCurve (class in
mclf.curves.smooth_projective_curves), 6

splitting_field()
(mclf.semistable_reduction.reduction_trees.InertialComponent
method), 83

stable_reduction()
(mclf.semistable_reduction.semistable_models.SemistableModel
method), 74

strict_inequalities()
(mclf.berkovich.piecewise_affine_functions.Domain
method), 52

structure_map() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve
method), 12

subextension() (mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension
method), 67

subfield() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 62

subtrees() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 35

sum_of_divisors() (in module
mclf.curves.smooth_projective_curves), 14

SuperellipticCurve (class in
mclf.curves.superelliptic_curves), 18

102 Index

MCLF Documentation

SuperpModel (class in
mclf.semistable_reduction.superp_models),
77

T
terminal_parameter()

(mclf.berkovich.piecewise_affine_functions.DirectedPath
method), 50

terminal_point() (mclf.berkovich.piecewise_affine_functions.AffineFunction
method), 49

terminal_point() (mclf.berkovich.piecewise_affine_functions.DirectedPath
method), 50

terminal_value() (mclf.berkovich.piecewise_affine_functions.AffineFunction
method), 49

tree() (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine
method), 42

tube() (mclf.berkovich.piecewise_affine_functions.DirectedPath
method), 50

type() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine
method), 27

type() (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 29

type_II_point() (mclf.semistable_reduction.reduction_trees.InertialComponent
method), 83

TypeIIPointOnBerkovichLine (class in
mclf.berkovich.berkovich_line), 25

TypeIPointOnBerkovichLine (class in
mclf.berkovich.berkovich_line), 27

TypeVPointOnBerkovichLine (class in
mclf.berkovich.type_V_points), 36

U
uniformizer() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion

method), 63
union() (mclf.berkovich.affinoid_domain.AffinoidDomainOnBerkovichLine

method), 42
union_of_affinoid_trees() (in module

mclf.berkovich.affinoid_domain), 47
UnionOfDomains (class in

mclf.berkovich.affinoid_domain), 45
upper_components()

(mclf.semistable_reduction.reduction_trees.InertialComponent
method), 83

upper_components()
(mclf.semistable_reduction.reduction_trees.LowerComponent
method), 84

upper_jumps() (mclf.padic_extensions.weak_padic_galois_extensions.WeakPadicGaloisExtension
method), 70

UpperComponent (class in
mclf.semistable_reduction.reduction_trees), 87

V
valuation() (mclf.berkovich.berkovich_line.TypeIIPointOnBerkovichLine

method), 27

valuation() (mclf.berkovich.berkovich_line.TypeIPointOnBerkovichLine
method), 29

valuation() (mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve
method), 6

valuation() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 63

valuation() (mclf.padic_extensions.fake_padic_extensions.FakepAdicExtension
method), 67

valuation() (mclf.semistable_reduction.reduction_trees.ReductionComponent
method), 85

valuation_from_discoid() (in module
mclf.berkovich.berkovich_line), 29

valuations_from_inequality() (in module
mclf.berkovich.berkovich_line), 30

valuative_function() (in module
mclf.berkovich.piecewise_affine_functions),
55

value() (mclf.curves.smooth_projective_curves.PointOnSmoothProjectiveCurve
method), 6

vector() (mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 63

vertices() (mclf.berkovich.berkovich_trees.BerkovichTree
method), 35

W
weak_splitting_field()

(mclf.padic_extensions.fake_padic_completions.FakepAdicCompletion
method), 63

WeakPadicGaloisExtension (class in
mclf.padic_extensions.weak_padic_galois_extensions),
68

Z
zeta_function() (mclf.curves.smooth_projective_curves.SmoothProjectiveCurve

method), 12

Index 103

	Curves
	Smooth projective curves over a field.
	Morphisms of smooth projective curves
	Superelliptic curves

	The Berkovich line
	The Berkovich line over a discretely valued field
	Finite subtrees of the Berkovich line
	Points of type V on the Berkovich line.
	Affinoid subdomains of the Berkovich line.
	Piecewise affine functions on the Berkovich projective line.

	p-adic extensions
	Fake p-adic completions
	Fake p-adic embeddings
	Fake p-adic extensions
	Weak p-adic Galois extensions

	Semistable reduction of curves
	Semistable reduction of a smooth projective curve over a local field
	Admissible reduction of curves
	Semistable models of superelliptic curves of degree p
	Reduction trees: a data structure for semistable reduction of covers of the projective line.

	Indices and tables
	Bibliography
	Python Module Index
	Index

